Upload 2 files
Browse files- Dockerfile +27 -0
- app.py +108 -0
Dockerfile
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.9.13
|
| 2 |
+
USER root
|
| 3 |
+
|
| 4 |
+
RUN apt-get update && \
|
| 5 |
+
apt-get install -y --no-install-recommends \
|
| 6 |
+
libgl1-mesa-glx \
|
| 7 |
+
git \
|
| 8 |
+
&& \
|
| 9 |
+
rm -rf /var/lib/apt/lists/*
|
| 10 |
+
|
| 11 |
+
RUN useradd -m -u 1000 user
|
| 12 |
+
USER user
|
| 13 |
+
|
| 14 |
+
ENV HOME=/home/user \
|
| 15 |
+
PATH=/home/user/.local/bin:$PATH
|
| 16 |
+
|
| 17 |
+
WORKDIR $HOME/app
|
| 18 |
+
|
| 19 |
+
COPY --chown=user . $HOME/app
|
| 20 |
+
|
| 21 |
+
ENV NUMBA_CACHE_DIR=/tmp/numba_cache
|
| 22 |
+
RUN git clone https://github.com/openai/shap-e
|
| 23 |
+
RUN pip install -r requirements.txt
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
CMD ["gunicorn", "-b", "0.0.0.0:7860","app:app"]
|
app.py
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from shap_e.diffusion.sample import sample_latents
|
| 3 |
+
from shap_e.diffusion.gaussian_diffusion import diffusion_from_config
|
| 4 |
+
from shap_e.models.download import load_model, load_config
|
| 5 |
+
from shap_e.util.notebooks import create_pan_cameras, decode_latent_images, gif_widget
|
| 6 |
+
from flask import Flask, request, jsonify
|
| 7 |
+
from flask_cors import CORS
|
| 8 |
+
import threading
|
| 9 |
+
import io
|
| 10 |
+
import base64
|
| 11 |
+
|
| 12 |
+
app = Flask(__name__)
|
| 13 |
+
CORS(app)
|
| 14 |
+
|
| 15 |
+
pipe = None
|
| 16 |
+
app.config['temp_response'] = None
|
| 17 |
+
app.config['generation_thread'] = None
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def initialize_model():
|
| 21 |
+
global pipe
|
| 22 |
+
try:
|
| 23 |
+
print('Downloading the model weights')
|
| 24 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 25 |
+
xm = load_model('transmitter', device=device)
|
| 26 |
+
model = load_model('text300M', device=device)
|
| 27 |
+
diffusion = diffusion_from_config(load_config('diffusion'))
|
| 28 |
+
return device, xm, model, diffusion
|
| 29 |
+
except Exception as e:
|
| 30 |
+
print(f"Error downloading the model: {e}")
|
| 31 |
+
return jsonify({"error": f"Failed to download model: {str(e)}"}), 500
|
| 32 |
+
|
| 33 |
+
def generate_image_gif(prompt):
|
| 34 |
+
global pipe
|
| 35 |
+
if pipe is None:
|
| 36 |
+
device, xm, model, diffusion = initialize_model()
|
| 37 |
+
|
| 38 |
+
try:
|
| 39 |
+
batch_size = 1
|
| 40 |
+
guidance_scale = 30.0
|
| 41 |
+
|
| 42 |
+
latents = sample_latents(
|
| 43 |
+
batch_size=batch_size,
|
| 44 |
+
model=model,
|
| 45 |
+
diffusion=diffusion,
|
| 46 |
+
guidance_scale=guidance_scale,
|
| 47 |
+
model_kwargs=dict(texts=[prompt] * batch_size),
|
| 48 |
+
progress=True,
|
| 49 |
+
clip_denoised=True,
|
| 50 |
+
use_fp16=True,
|
| 51 |
+
use_karras=True,
|
| 52 |
+
karras_steps=64,
|
| 53 |
+
sigma_min=1E-3,
|
| 54 |
+
sigma_max=160,
|
| 55 |
+
s_churn=0,
|
| 56 |
+
)
|
| 57 |
+
render_mode = 'nerf'
|
| 58 |
+
size = 256
|
| 59 |
+
# render_mode = 'nerf' # you can change this to 'stf'
|
| 60 |
+
# size = # this is the size of the renders, higher values take longer to render.
|
| 61 |
+
|
| 62 |
+
cameras = create_pan_cameras(size, device)
|
| 63 |
+
images = decode_latent_images(xm, latents, cameras, rendering_mode=render_mode)
|
| 64 |
+
writer = io.BytesIO()
|
| 65 |
+
images[0].save(writer, format="GIF", save_all=True, append_images=images[1:], duration=100, loop=0)
|
| 66 |
+
writer.seek(0)
|
| 67 |
+
data = base64.b64encode(writer.read()).decode("ascii")
|
| 68 |
+
response_data = {'video_base64': data,'status':None}
|
| 69 |
+
print('response_data',response_data)
|
| 70 |
+
return response_data
|
| 71 |
+
except Exception as e:
|
| 72 |
+
print(f"Error generating 3D: {e}")
|
| 73 |
+
return jsonify({"error": f"Failed to generate 3D animation: {str(e)}"}), 500
|
| 74 |
+
|
| 75 |
+
def background(prompt):
|
| 76 |
+
with app.app_context():
|
| 77 |
+
data = generate_image_gif(prompt)
|
| 78 |
+
app.config['temp_response'] = data
|
| 79 |
+
|
| 80 |
+
@app.route('/run', methods=['POST'])
|
| 81 |
+
def handle_animation_request():
|
| 82 |
+
|
| 83 |
+
prompt = request.form.get('prompt')
|
| 84 |
+
if prompt:
|
| 85 |
+
generation_thread = threading.Thread(target=background, args=(prompt,))
|
| 86 |
+
app.config['generation_thread'] = generation_thread
|
| 87 |
+
generation_thread.start()
|
| 88 |
+
response_data = {"message": "3D generation started", "process_id": generation_thread.ident}
|
| 89 |
+
|
| 90 |
+
return jsonify(response_data)
|
| 91 |
+
else:
|
| 92 |
+
return jsonify({"message": "Please provide a valid text prompt."}), 400
|
| 93 |
+
|
| 94 |
+
@app.route('/status', methods=['GET'])
|
| 95 |
+
def check_animation_status():
|
| 96 |
+
process_id = request.args.get('process_id',None)
|
| 97 |
+
|
| 98 |
+
if process_id:
|
| 99 |
+
generation_thread = app.config.get('generation_thread')
|
| 100 |
+
if generation_thread and generation_thread.is_alive():
|
| 101 |
+
return jsonify({"status": "in_progress"}), 200
|
| 102 |
+
elif app.config.get('temp_response'):
|
| 103 |
+
final_response = app.config['temp_response']
|
| 104 |
+
final_response['status'] = 'completed'
|
| 105 |
+
return jsonify(final_response)
|
| 106 |
+
|
| 107 |
+
if __name__ == '__main__':
|
| 108 |
+
app.run(debug=True)
|