Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,160 +1,160 @@
|
|
| 1 |
-
import argparse
|
| 2 |
-
import tempfile
|
| 3 |
-
import os
|
| 4 |
-
|
| 5 |
-
from flask import Flask, request, jsonify
|
| 6 |
-
from omegaconf import OmegaConf
|
| 7 |
-
import torch
|
| 8 |
-
from diffusers import AutoencoderKL, DDIMScheduler
|
| 9 |
-
from latentsync.models.unet import UNet3DConditionModel
|
| 10 |
-
from latentsync.pipelines.lipsync_pipeline import LipsyncPipeline
|
| 11 |
-
from diffusers.utils.import_utils import is_xformers_available
|
| 12 |
-
from accelerate.utils import set_seed
|
| 13 |
-
from latentsync.whisper.audio2feature import Audio2Feature
|
| 14 |
-
from openai import OpenAI
|
| 15 |
-
from elevenlabs import set_api_key, generate, play, clone, Voice, VoiceSettings
|
| 16 |
-
|
| 17 |
-
# Initialize the Flask app
|
| 18 |
-
app = Flask(__name__)
|
| 19 |
-
TEMP_DIR = None
|
| 20 |
-
|
| 21 |
-
def run_inference(video_path, audio_path, video_out_path,
|
| 22 |
-
inference_ckpt_path, unet_config_path="configs/unet/second_stage.yaml",
|
| 23 |
-
inference_steps=20, guidance_scale=1.0, seed=1247):
|
| 24 |
-
# Load configuration
|
| 25 |
-
config = OmegaConf.load(unet_config_path)
|
| 26 |
-
|
| 27 |
-
# Determine proper dtype based on GPU capabilities
|
| 28 |
-
is_fp16_supported = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] > 7
|
| 29 |
-
dtype = torch.float16 if is_fp16_supported else torch.float32
|
| 30 |
-
|
| 31 |
-
# Setup scheduler
|
| 32 |
-
scheduler = DDIMScheduler.from_pretrained("configs")
|
| 33 |
-
|
| 34 |
-
# Choose whisper model based on config settings
|
| 35 |
-
if config.model.cross_attention_dim == 768:
|
| 36 |
-
whisper_model_path = "checkpoints/whisper/small.pt"
|
| 37 |
-
elif config.model.cross_attention_dim == 384:
|
| 38 |
-
whisper_model_path = "checkpoints/whisper/tiny.pt"
|
| 39 |
-
else:
|
| 40 |
-
raise NotImplementedError("cross_attention_dim must be 768 or 384")
|
| 41 |
-
|
| 42 |
-
# Initialize the audio encoder
|
| 43 |
-
audio_encoder = Audio2Feature(model_path=whisper_model_path,
|
| 44 |
-
device="cuda", num_frames=config.data.num_frames)
|
| 45 |
-
|
| 46 |
-
# Load VAE
|
| 47 |
-
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=dtype)
|
| 48 |
-
vae.config.scaling_factor = 0.18215
|
| 49 |
-
vae.config.shift_factor = 0
|
| 50 |
-
|
| 51 |
-
# Load UNet model from the checkpoint
|
| 52 |
-
unet, _ = UNet3DConditionModel.from_pretrained(
|
| 53 |
-
OmegaConf.to_container(config.model),
|
| 54 |
-
inference_ckpt_path, # load checkpoint
|
| 55 |
-
device="cpu",
|
| 56 |
-
)
|
| 57 |
-
unet = unet.to(dtype=dtype)
|
| 58 |
-
|
| 59 |
-
# Optionally enable memory-efficient attention if available
|
| 60 |
-
if is_xformers_available():
|
| 61 |
-
unet.enable_xformers_memory_efficient_attention()
|
| 62 |
-
|
| 63 |
-
# Initialize the pipeline and move to GPU
|
| 64 |
-
pipeline = LipsyncPipeline(
|
| 65 |
-
vae=vae,
|
| 66 |
-
audio_encoder=audio_encoder,
|
| 67 |
-
unet=unet,
|
| 68 |
-
scheduler=scheduler,
|
| 69 |
-
).to("cuda")
|
| 70 |
-
|
| 71 |
-
# Set seed
|
| 72 |
-
if seed != -1:
|
| 73 |
-
set_seed(seed)
|
| 74 |
-
else:
|
| 75 |
-
torch.seed()
|
| 76 |
-
|
| 77 |
-
# Run the pipeline
|
| 78 |
-
pipeline(
|
| 79 |
-
video_path=video_path,
|
| 80 |
-
audio_path=audio_path,
|
| 81 |
-
video_out_path=video_out_path,
|
| 82 |
-
video_mask_path=video_out_path.replace(".mp4", "_mask.mp4"),
|
| 83 |
-
num_frames=config.data.num_frames,
|
| 84 |
-
num_inference_steps=inference_steps,
|
| 85 |
-
guidance_scale=guidance_scale,
|
| 86 |
-
weight_dtype=dtype,
|
| 87 |
-
width=config.data.resolution,
|
| 88 |
-
height=config.data.resolution,
|
| 89 |
-
)
|
| 90 |
-
|
| 91 |
-
def create_temp_dir():
|
| 92 |
-
return tempfile.TemporaryDirectory()
|
| 93 |
-
|
| 94 |
-
def generate_audio(voice_cloning, text_prompt):
|
| 95 |
-
if voice_cloning == 'yes':
|
| 96 |
-
set_api_key('92e149985ea2732b4359c74346c3daee')
|
| 97 |
-
voice = Voice(voice_id="VJpttplXHolgV2leGe5V",name="Marc",settings=VoiceSettings(
|
| 98 |
-
stability=0.71, similarity_boost=0.9, style=0.0, use_speaker_boost=True),)
|
| 99 |
-
|
| 100 |
-
audio = generate(text = text_prompt, voice = voice, model = "eleven_multilingual_v2",stream=True, latency=4)
|
| 101 |
-
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="cloned_audio_",dir=TEMP_DIR.name, delete=False) as temp_file:
|
| 102 |
-
for chunk in audio:
|
| 103 |
-
temp_file.write(chunk)
|
| 104 |
-
driven_audio_path = temp_file.name
|
| 105 |
-
print('driven_audio_path',driven_audio_path)
|
| 106 |
-
|
| 107 |
-
return driven_audio_path
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
@app.route('/run', methods=['POST'])
|
| 111 |
-
def generate_video():
|
| 112 |
-
global TEMP_DIR
|
| 113 |
-
TEMP_DIR = create_temp_dir()
|
| 114 |
-
|
| 115 |
-
if 'video' not in request.files:
|
| 116 |
-
return jsonify({'error': 'Video file is required.'}), 400
|
| 117 |
-
|
| 118 |
-
video_file = request.files['video']
|
| 119 |
-
text_prompt = request.form['text_prompt']
|
| 120 |
-
print('Input text prompt: ',text_prompt)
|
| 121 |
-
text_prompt = text_prompt.strip()
|
| 122 |
-
if not text_prompt:
|
| 123 |
-
return jsonify({'error': 'Input text prompt cannot be blank'}), 400
|
| 124 |
-
|
| 125 |
-
voice_cloning = 'yes'
|
| 126 |
-
temp_audio_path = generate_audio(voice_cloning, text_prompt)
|
| 127 |
-
with tempfile.NamedTemporaryFile(suffix=".mp4", prefix="input_",dir=TEMP_DIR.name, delete=False) as temp_file:
|
| 128 |
-
temp_video_path = temp_file.name
|
| 129 |
-
video_file.save(temp_video_path)
|
| 130 |
-
print('temp_video_path',temp_video_path)
|
| 131 |
-
|
| 132 |
-
output_video = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4").name
|
| 133 |
-
|
| 134 |
-
# You can pass additional parameters via form data if needed (e.g., checkpoint path)
|
| 135 |
-
inference_ckpt_path = request.form.get('inference_ckpt_path', 'checkpoints/latentsync_unet.pt')
|
| 136 |
-
unet_config_path = request.form.get('unet_config_path', 'configs/unet/second_stage.yaml')
|
| 137 |
-
|
| 138 |
-
try:
|
| 139 |
-
run_inference(
|
| 140 |
-
video_path=temp_video_path
|
| 141 |
-
audio_path=temp_audio_path
|
| 142 |
-
video_out_path=output_video,
|
| 143 |
-
inference_ckpt_path=inference_ckpt_path,
|
| 144 |
-
unet_config_path=unet_config_path,
|
| 145 |
-
inference_steps=int(request.form.get('inference_steps', 20)),
|
| 146 |
-
guidance_scale=float(request.form.get('guidance_scale', 1.0)),
|
| 147 |
-
seed=int(request.form.get('seed', 1247))
|
| 148 |
-
)
|
| 149 |
-
# Return the output video path or further process the file for download
|
| 150 |
-
return jsonify({'output_video': output_video}), 200
|
| 151 |
-
except Exception as e:
|
| 152 |
-
return jsonify({'error': str(e)}), 500
|
| 153 |
-
|
| 154 |
-
@app.route("/health", methods=["GET"])
|
| 155 |
-
def health_status():
|
| 156 |
-
response = {"online": "true"}
|
| 157 |
-
return jsonify(response)
|
| 158 |
-
|
| 159 |
-
if __name__ == '__main__':
|
| 160 |
app.run(debug=True)
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import tempfile
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
from flask import Flask, request, jsonify
|
| 6 |
+
from omegaconf import OmegaConf
|
| 7 |
+
import torch
|
| 8 |
+
from diffusers import AutoencoderKL, DDIMScheduler
|
| 9 |
+
from latentsync.models.unet import UNet3DConditionModel
|
| 10 |
+
from latentsync.pipelines.lipsync_pipeline import LipsyncPipeline
|
| 11 |
+
from diffusers.utils.import_utils import is_xformers_available
|
| 12 |
+
from accelerate.utils import set_seed
|
| 13 |
+
from latentsync.whisper.audio2feature import Audio2Feature
|
| 14 |
+
from openai import OpenAI
|
| 15 |
+
from elevenlabs import set_api_key, generate, play, clone, Voice, VoiceSettings
|
| 16 |
+
|
| 17 |
+
# Initialize the Flask app
|
| 18 |
+
app = Flask(__name__)
|
| 19 |
+
TEMP_DIR = None
|
| 20 |
+
|
| 21 |
+
def run_inference(video_path, audio_path, video_out_path,
|
| 22 |
+
inference_ckpt_path, unet_config_path="configs/unet/second_stage.yaml",
|
| 23 |
+
inference_steps=20, guidance_scale=1.0, seed=1247):
|
| 24 |
+
# Load configuration
|
| 25 |
+
config = OmegaConf.load(unet_config_path)
|
| 26 |
+
|
| 27 |
+
# Determine proper dtype based on GPU capabilities
|
| 28 |
+
is_fp16_supported = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] > 7
|
| 29 |
+
dtype = torch.float16 if is_fp16_supported else torch.float32
|
| 30 |
+
|
| 31 |
+
# Setup scheduler
|
| 32 |
+
scheduler = DDIMScheduler.from_pretrained("configs")
|
| 33 |
+
|
| 34 |
+
# Choose whisper model based on config settings
|
| 35 |
+
if config.model.cross_attention_dim == 768:
|
| 36 |
+
whisper_model_path = "checkpoints/whisper/small.pt"
|
| 37 |
+
elif config.model.cross_attention_dim == 384:
|
| 38 |
+
whisper_model_path = "checkpoints/whisper/tiny.pt"
|
| 39 |
+
else:
|
| 40 |
+
raise NotImplementedError("cross_attention_dim must be 768 or 384")
|
| 41 |
+
|
| 42 |
+
# Initialize the audio encoder
|
| 43 |
+
audio_encoder = Audio2Feature(model_path=whisper_model_path,
|
| 44 |
+
device="cuda", num_frames=config.data.num_frames)
|
| 45 |
+
|
| 46 |
+
# Load VAE
|
| 47 |
+
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=dtype)
|
| 48 |
+
vae.config.scaling_factor = 0.18215
|
| 49 |
+
vae.config.shift_factor = 0
|
| 50 |
+
|
| 51 |
+
# Load UNet model from the checkpoint
|
| 52 |
+
unet, _ = UNet3DConditionModel.from_pretrained(
|
| 53 |
+
OmegaConf.to_container(config.model),
|
| 54 |
+
inference_ckpt_path, # load checkpoint
|
| 55 |
+
device="cpu",
|
| 56 |
+
)
|
| 57 |
+
unet = unet.to(dtype=dtype)
|
| 58 |
+
|
| 59 |
+
# Optionally enable memory-efficient attention if available
|
| 60 |
+
if is_xformers_available():
|
| 61 |
+
unet.enable_xformers_memory_efficient_attention()
|
| 62 |
+
|
| 63 |
+
# Initialize the pipeline and move to GPU
|
| 64 |
+
pipeline = LipsyncPipeline(
|
| 65 |
+
vae=vae,
|
| 66 |
+
audio_encoder=audio_encoder,
|
| 67 |
+
unet=unet,
|
| 68 |
+
scheduler=scheduler,
|
| 69 |
+
).to("cuda")
|
| 70 |
+
|
| 71 |
+
# Set seed
|
| 72 |
+
if seed != -1:
|
| 73 |
+
set_seed(seed)
|
| 74 |
+
else:
|
| 75 |
+
torch.seed()
|
| 76 |
+
|
| 77 |
+
# Run the pipeline
|
| 78 |
+
pipeline(
|
| 79 |
+
video_path=video_path,
|
| 80 |
+
audio_path=audio_path,
|
| 81 |
+
video_out_path=video_out_path,
|
| 82 |
+
video_mask_path=video_out_path.replace(".mp4", "_mask.mp4"),
|
| 83 |
+
num_frames=config.data.num_frames,
|
| 84 |
+
num_inference_steps=inference_steps,
|
| 85 |
+
guidance_scale=guidance_scale,
|
| 86 |
+
weight_dtype=dtype,
|
| 87 |
+
width=config.data.resolution,
|
| 88 |
+
height=config.data.resolution,
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
def create_temp_dir():
|
| 92 |
+
return tempfile.TemporaryDirectory()
|
| 93 |
+
|
| 94 |
+
def generate_audio(voice_cloning, text_prompt):
|
| 95 |
+
if voice_cloning == 'yes':
|
| 96 |
+
set_api_key('92e149985ea2732b4359c74346c3daee')
|
| 97 |
+
voice = Voice(voice_id="VJpttplXHolgV2leGe5V",name="Marc",settings=VoiceSettings(
|
| 98 |
+
stability=0.71, similarity_boost=0.9, style=0.0, use_speaker_boost=True),)
|
| 99 |
+
|
| 100 |
+
audio = generate(text = text_prompt, voice = voice, model = "eleven_multilingual_v2",stream=True, latency=4)
|
| 101 |
+
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="cloned_audio_",dir=TEMP_DIR.name, delete=False) as temp_file:
|
| 102 |
+
for chunk in audio:
|
| 103 |
+
temp_file.write(chunk)
|
| 104 |
+
driven_audio_path = temp_file.name
|
| 105 |
+
print('driven_audio_path',driven_audio_path)
|
| 106 |
+
|
| 107 |
+
return driven_audio_path
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
@app.route('/run', methods=['POST'])
|
| 111 |
+
def generate_video():
|
| 112 |
+
global TEMP_DIR
|
| 113 |
+
TEMP_DIR = create_temp_dir()
|
| 114 |
+
|
| 115 |
+
if 'video' not in request.files:
|
| 116 |
+
return jsonify({'error': 'Video file is required.'}), 400
|
| 117 |
+
|
| 118 |
+
video_file = request.files['video']
|
| 119 |
+
text_prompt = request.form['text_prompt']
|
| 120 |
+
print('Input text prompt: ',text_prompt)
|
| 121 |
+
text_prompt = text_prompt.strip()
|
| 122 |
+
if not text_prompt:
|
| 123 |
+
return jsonify({'error': 'Input text prompt cannot be blank'}), 400
|
| 124 |
+
|
| 125 |
+
voice_cloning = 'yes'
|
| 126 |
+
temp_audio_path = generate_audio(voice_cloning, text_prompt)
|
| 127 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4", prefix="input_",dir=TEMP_DIR.name, delete=False) as temp_file:
|
| 128 |
+
temp_video_path = temp_file.name
|
| 129 |
+
video_file.save(temp_video_path)
|
| 130 |
+
print('temp_video_path',temp_video_path)
|
| 131 |
+
|
| 132 |
+
output_video = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4").name
|
| 133 |
+
|
| 134 |
+
# You can pass additional parameters via form data if needed (e.g., checkpoint path)
|
| 135 |
+
inference_ckpt_path = request.form.get('inference_ckpt_path', 'checkpoints/latentsync_unet.pt')
|
| 136 |
+
unet_config_path = request.form.get('unet_config_path', 'configs/unet/second_stage.yaml')
|
| 137 |
+
|
| 138 |
+
try:
|
| 139 |
+
run_inference(
|
| 140 |
+
video_path=temp_video_path,
|
| 141 |
+
audio_path=temp_audio_path,
|
| 142 |
+
video_out_path=output_video,
|
| 143 |
+
inference_ckpt_path=inference_ckpt_path,
|
| 144 |
+
unet_config_path=unet_config_path,
|
| 145 |
+
inference_steps=int(request.form.get('inference_steps', 20)),
|
| 146 |
+
guidance_scale=float(request.form.get('guidance_scale', 1.0)),
|
| 147 |
+
seed=int(request.form.get('seed', 1247))
|
| 148 |
+
)
|
| 149 |
+
# Return the output video path or further process the file for download
|
| 150 |
+
return jsonify({'output_video': output_video}), 200
|
| 151 |
+
except Exception as e:
|
| 152 |
+
return jsonify({'error': str(e)}), 500
|
| 153 |
+
|
| 154 |
+
@app.route("/health", methods=["GET"])
|
| 155 |
+
def health_status():
|
| 156 |
+
response = {"online": "true"}
|
| 157 |
+
return jsonify(response)
|
| 158 |
+
|
| 159 |
+
if __name__ == '__main__':
|
| 160 |
app.run(debug=True)
|