Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| auto_scale_lr = dict(base_batch_size=512) | |
| backend_args = dict(backend='local') | |
| codec = dict( | |
| heatmap_size=( | |
| 48, | |
| 64, | |
| ), | |
| input_size=( | |
| 192, | |
| 256, | |
| ), | |
| sigma=2, | |
| type='MSRAHeatmap') | |
| custom_hooks = [ | |
| dict(type='SyncBuffersHook'), | |
| ] | |
| data_mode = 'topdown' | |
| data_root = 'data/coco/' | |
| dataset_type = 'CocoDataset' | |
| default_hooks = dict( | |
| badcase=dict( | |
| badcase_thr=5, | |
| enable=False, | |
| metric_type='loss', | |
| out_dir='badcase', | |
| type='BadCaseAnalysisHook'), | |
| checkpoint=dict( | |
| interval=10, | |
| rule='greater', | |
| save_best='coco/AP', | |
| type='CheckpointHook'), | |
| logger=dict(interval=50, type='LoggerHook'), | |
| param_scheduler=dict(type='ParamSchedulerHook'), | |
| sampler_seed=dict(type='DistSamplerSeedHook'), | |
| timer=dict(type='IterTimerHook'), | |
| visualization=dict(enable=False, type='PoseVisualizationHook')) | |
| default_scope = 'mmpose' | |
| env_cfg = dict( | |
| cudnn_benchmark=False, | |
| dist_cfg=dict(backend='nccl'), | |
| mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0)) | |
| load_from = None | |
| log_level = 'INFO' | |
| log_processor = dict( | |
| by_epoch=True, num_digits=6, type='LogProcessor', window_size=50) | |
| model = dict( | |
| backbone=dict( | |
| extra=dict( | |
| stage1=dict( | |
| block='BOTTLENECK', | |
| num_blocks=(4, ), | |
| num_branches=1, | |
| num_channels=(64, ), | |
| num_modules=1), | |
| stage2=dict( | |
| block='BASIC', | |
| num_blocks=( | |
| 4, | |
| 4, | |
| ), | |
| num_branches=2, | |
| num_channels=( | |
| 48, | |
| 96, | |
| ), | |
| num_modules=1), | |
| stage3=dict( | |
| block='BASIC', | |
| num_blocks=( | |
| 4, | |
| 4, | |
| 4, | |
| ), | |
| num_branches=3, | |
| num_channels=( | |
| 48, | |
| 96, | |
| 192, | |
| ), | |
| num_modules=4), | |
| stage4=dict( | |
| block='BASIC', | |
| num_blocks=( | |
| 4, | |
| 4, | |
| 4, | |
| 4, | |
| ), | |
| num_branches=4, | |
| num_channels=( | |
| 48, | |
| 96, | |
| 192, | |
| 384, | |
| ), | |
| num_modules=3)), | |
| in_channels=3, | |
| init_cfg=dict( | |
| checkpoint= | |
| 'https://download.openmmlab.com/mmpose/pretrain_models/hrnet_w48-8ef0771d.pth', | |
| type='Pretrained'), | |
| type='HRNet'), | |
| data_preprocessor=dict( | |
| bgr_to_rgb=True, | |
| mean=[ | |
| 123.675, | |
| 116.28, | |
| 103.53, | |
| ], | |
| std=[ | |
| 58.395, | |
| 57.12, | |
| 57.375, | |
| ], | |
| type='PoseDataPreprocessor'), | |
| head=dict( | |
| decoder=dict( | |
| heatmap_size=( | |
| 48, | |
| 64, | |
| ), | |
| input_size=( | |
| 192, | |
| 256, | |
| ), | |
| sigma=2, | |
| type='MSRAHeatmap'), | |
| deconv_out_channels=None, | |
| in_channels=48, | |
| loss=dict(type='KeypointMSELoss', use_target_weight=True), | |
| out_channels=17, | |
| type='HeatmapHead'), | |
| test_cfg=dict(flip_mode='heatmap', flip_test=True, shift_heatmap=True), | |
| type='TopdownPoseEstimator') | |
| optim_wrapper = dict(optimizer=dict(lr=0.0005, type='Adam')) | |
| param_scheduler = [ | |
| dict( | |
| begin=0, by_epoch=False, end=500, start_factor=0.001, type='LinearLR'), | |
| dict( | |
| begin=0, | |
| by_epoch=True, | |
| end=210, | |
| gamma=0.1, | |
| milestones=[ | |
| 170, | |
| 200, | |
| ], | |
| type='MultiStepLR'), | |
| ] | |
| resume = False | |
| test_cfg = dict() | |
| test_dataloader = dict( | |
| batch_size=32, | |
| dataset=dict( | |
| ann_file='annotations/person_keypoints_val2017.json', | |
| bbox_file= | |
| 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json', | |
| data_mode='topdown', | |
| data_prefix=dict(img='val2017/'), | |
| data_root='data/coco/', | |
| pipeline=[ | |
| dict(type='LoadImage'), | |
| dict(type='GetBBoxCenterScale'), | |
| dict(input_size=( | |
| 192, | |
| 256, | |
| ), type='TopdownAffine'), | |
| dict(type='PackPoseInputs'), | |
| ], | |
| test_mode=True, | |
| type='CocoDataset'), | |
| drop_last=False, | |
| num_workers=2, | |
| persistent_workers=True, | |
| sampler=dict(round_up=False, shuffle=False, type='DefaultSampler')) | |
| test_evaluator = dict( | |
| ann_file='data/coco/annotations/person_keypoints_val2017.json', | |
| type='CocoMetric') | |
| train_cfg = dict(by_epoch=True, max_epochs=210, val_interval=10) | |
| train_dataloader = dict( | |
| batch_size=32, | |
| dataset=dict( | |
| ann_file='annotations/person_keypoints_train2017.json', | |
| data_mode='topdown', | |
| data_prefix=dict(img='train2017/'), | |
| data_root='data/coco/', | |
| pipeline=[ | |
| dict(type='LoadImage'), | |
| dict(type='GetBBoxCenterScale'), | |
| dict(direction='horizontal', type='RandomFlip'), | |
| dict(type='RandomHalfBody'), | |
| dict(type='RandomBBoxTransform'), | |
| dict(input_size=( | |
| 192, | |
| 256, | |
| ), type='TopdownAffine'), | |
| dict( | |
| encoder=dict( | |
| heatmap_size=( | |
| 48, | |
| 64, | |
| ), | |
| input_size=( | |
| 192, | |
| 256, | |
| ), | |
| sigma=2, | |
| type='MSRAHeatmap'), | |
| type='GenerateTarget'), | |
| dict(type='PackPoseInputs'), | |
| ], | |
| type='CocoDataset'), | |
| num_workers=2, | |
| persistent_workers=True, | |
| sampler=dict(shuffle=True, type='DefaultSampler')) | |
| train_pipeline = [ | |
| dict(type='LoadImage'), | |
| dict(type='GetBBoxCenterScale'), | |
| dict(direction='horizontal', type='RandomFlip'), | |
| dict(type='RandomHalfBody'), | |
| dict(type='RandomBBoxTransform'), | |
| dict(input_size=( | |
| 192, | |
| 256, | |
| ), type='TopdownAffine'), | |
| dict( | |
| encoder=dict( | |
| heatmap_size=( | |
| 48, | |
| 64, | |
| ), | |
| input_size=( | |
| 192, | |
| 256, | |
| ), | |
| sigma=2, | |
| type='MSRAHeatmap'), | |
| type='GenerateTarget'), | |
| dict(type='PackPoseInputs'), | |
| ] | |
| val_cfg = dict() | |
| val_dataloader = dict( | |
| batch_size=32, | |
| dataset=dict( | |
| ann_file='annotations/person_keypoints_val2017.json', | |
| bbox_file= | |
| 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json', | |
| data_mode='topdown', | |
| data_prefix=dict(img='val2017/'), | |
| data_root='data/coco/', | |
| pipeline=[ | |
| dict(type='LoadImage'), | |
| dict(type='GetBBoxCenterScale'), | |
| dict(input_size=( | |
| 192, | |
| 256, | |
| ), type='TopdownAffine'), | |
| dict(type='PackPoseInputs'), | |
| ], | |
| test_mode=True, | |
| type='CocoDataset'), | |
| drop_last=False, | |
| num_workers=2, | |
| persistent_workers=True, | |
| sampler=dict(round_up=False, shuffle=False, type='DefaultSampler')) | |
| val_evaluator = dict( | |
| ann_file='data/coco/annotations/person_keypoints_val2017.json', | |
| type='CocoMetric') | |
| val_pipeline = [ | |
| dict(type='LoadImage'), | |
| dict(type='GetBBoxCenterScale'), | |
| dict(input_size=( | |
| 192, | |
| 256, | |
| ), type='TopdownAffine'), | |
| dict(type='PackPoseInputs'), | |
| ] | |
| vis_backends = [ | |
| dict(type='LocalVisBackend'), | |
| ] | |
| visualizer = dict( | |
| name='visualizer', | |
| type='PoseLocalVisualizer', | |
| vis_backends=[ | |
| dict(type='LocalVisBackend'), | |
| ]) | |