File size: 4,449 Bytes
123bcda
 
 
4697a0b
46daabb
03c413c
123bcda
53313b4
46daabb
123bcda
 
 
 
53313b4
 
50f72af
 
 
 
 
 
 
 
 
 
53313b4
b25c835
 
123bcda
 
 
 
 
 
 
 
 
 
 
 
53313b4
123bcda
 
 
 
 
b25c835
123bcda
 
b25c835
 
123bcda
b25c835
123bcda
 
b25c835
 
 
 
123bcda
b25c835
 
 
123bcda
 
b25c835
 
123bcda
b25c835
123bcda
b25c835
 
123bcda
 
 
 
 
 
 
b25c835
123bcda
 
 
 
 
 
b25c835
123bcda
3543cb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f245f3
 
 
 
 
3543cb0
 
123bcda
 
3543cb0
b25c835
 
3543cb0
b25c835
123bcda
f2b46a7
 
778696e
 
f2b46a7
7d4b91b
b3aabda
 
123bcda
0ab0ff0
8f245f3
 
35db1ff
8f245f3
 
b25c835
3543cb0
b25c835
3543cb0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import cv2
import gradio as gr
import numpy as np

import os

import torch


from pytorchvideo.transforms import (
    Normalize,
    UniformTemporalSubsample,
)
from torchvision.transforms import Compose, Lambda, Resize
from transformers import VideoMAEFeatureExtractor, VideoMAEForVideoClassification
# FIXED IMPORT
from torchvision.transforms import functional as F

# --- Fix pytorchvideo import error for Kaggle/torchvision >= 0.17 ---
import sys
import types

# Create a fake module to satisfy pytorchvideo
fake_ft = types.ModuleType("torchvision.transforms.functional_tensor")
sys.modules["torchvision.transforms.functional_tensor"] = fake_ft

# Load model and processor
MODEL_CKPT = "Shawon16/VideoMAE_BdSLW401_20_epochs_p5_SR_10"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MODEL = VideoMAEForVideoClassification.from_pretrained(MODEL_CKPT).to(DEVICE)
PROCESSOR = VideoMAEFeatureExtractor.from_pretrained(MODEL_CKPT)

RESIZE_TO = PROCESSOR.size["shortest_edge"]
NUM_FRAMES_TO_SAMPLE = MODEL.config.num_frames
IMAGE_STATS = {"image_mean": [0.485, 0.456, 0.406], "image_std": [0.229, 0.224, 0.225]}
VAL_TRANSFORMS = Compose(
    [
        UniformTemporalSubsample(NUM_FRAMES_TO_SAMPLE),
        Lambda(lambda x: x / 255.0),
        Normalize(IMAGE_STATS["image_mean"], IMAGE_STATS["image_std"]),
        Resize((RESIZE_TO, RESIZE_TO)),
    ]
)
LABELS = list(MODEL.config.label2id.keys())

def parse_video(video_file):
    """Extract frames from a video file with a sample rate of 10."""
    vs = cv2.VideoCapture(video_file)
    frames = []
    frame_id = 0
    
    while True:
        grabbed, frame = vs.read()
        if not grabbed:
            break
        
        if frame_id % 10 == 0:  # Sample every 10th frame
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            frames.append(frame)

        frame_id += 1
        
    vs.release()
    return frames

def preprocess_video(frames):
    """Preprocess video frames for inference."""
    video_tensor = torch.tensor(np.array(frames).astype(frames[0].dtype))
    video_tensor = video_tensor.permute(3, 0, 1, 2)  # (num_channels, num_frames, height, width)
    video_tensor_pp = VAL_TRANSFORMS(video_tensor)
    video_tensor_pp = video_tensor_pp.permute(1, 0, 2, 3)  # (num_frames, num_channels, height, width)
    video_tensor_pp = video_tensor_pp.unsqueeze(0)  # Add batch dimension
    return video_tensor_pp.to(DEVICE)

def infer(video_file):
    frames = parse_video(video_file)
    video_tensor = preprocess_video(frames)
    inputs = {"pixel_values": video_tensor}

    # Forward pass
    with torch.no_grad():
        outputs = MODEL(**inputs)
        logits = outputs.logits
    softmax_scores = torch.nn.functional.softmax(logits, dim=-1).squeeze(0)
    confidences = {LABELS[i]: float(softmax_scores[i]) for i in range(len(LABELS))}

    return confidences, frames  # Remove confidence plot

custom_css = """
/* Hide the webcam button */
button[data-testid="webcam-button"] {
    display: none !important;
}

/* Reduce padding and margins */
.gradio-container {
    max-width: 700px !important; /* Set a smaller max width */
    margin: auto;
    padding: 10px !important;
}

/* Reduce the gallery size */
.gr-gallery {
    max-height: 200px !important;  /* Make the frames smaller */
}

/* Center the title */
h1 {
    text-align: center !important;
}
"""

gr.Interface(
    fn=infer,
    inputs=[gr.Video(label="Upload Video")],  # Keep Video for preview
    outputs=[
        gr.Label(num_top_classes=5, label="Top 5 Predictions"),
        gr.Gallery(label="Sampled Frames (Rate: 10)", columns=4, height="200px"),  # Smaller gallery
    ],
    examples=[
        ["W002S08F_03.mp4"],
        ["W003S08F_11.mp4"],
        #["W205S08F_02.mp4"],
        #["W211S04F_03.mp4"],
        ["W389S08F_02.mp4"],
        ["W401S04F_06.mp4"],
        #[r"C:\Users\shawo\Desktop\BdSLW60 Full DataSet\FrameRate Corrected Clips\W2\U8W2F_trial_6_R.mp4"],
        #[r"C:\Users\shawo\Desktop\BdSLW60 Full DataSet\FrameRate Corrected Clips\W20\U4W20F_trial_9_R.mp4"],
    ],
    title="Bangla Word Level (BdSLW401) Sign Language Recognition Interface",
    
    description=(
        "This framework uses a fine-tuned VideoLLM (VideoMAE) to classify Bangla Sign Language words from video inputs."
        " Upload a video for predictions."
    ),
    flagging_mode="never",
    css=custom_css,  # Apply custom CSS for compact design
).launch()