DongY-Kim
commited on
Commit
·
b393eb3
1
Parent(s):
d04672d
Update
Browse files- app.py +118 -0
- labels.txt +150 -0
- person-1.jpg +0 -0
- person-2.jpg +0 -0
- person-3.jpg +0 -0
- person-4.jpg +0 -0
- person-5.jpg +0 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from matplotlib import gridspec
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import torch
|
| 7 |
+
from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation
|
| 8 |
+
|
| 9 |
+
MODEL_ID = "nvidia/segformer-b0-finetuned-ade-512-512"
|
| 10 |
+
processor = AutoImageProcessor.from_pretrained(MODEL_ID)
|
| 11 |
+
model = AutoModelForSemanticSegmentation.from_pretrained(MODEL_ID)
|
| 12 |
+
|
| 13 |
+
def ade_palette():
|
| 14 |
+
"""ADE20K palette that maps each class to RGB values."""
|
| 15 |
+
return [
|
| 16 |
+
[204, 87, 92],[112, 185, 212],[45, 189, 106],[234, 123, 67],[78, 56, 123],[210, 32, 89],
|
| 17 |
+
[90, 180, 56],[155, 102, 200],[33, 147, 176],[255, 183, 76],[67, 123, 89],[190, 60, 45],
|
| 18 |
+
[134, 112, 200],[56, 45, 189],[200, 56, 123],[87, 92, 204],[120, 56, 123],[45, 78, 123],
|
| 19 |
+
[156, 200, 56],[32, 90, 210],[56, 123, 67],[180, 56, 123],[123, 67, 45],[45, 134, 200],
|
| 20 |
+
[67, 56, 123],[78, 123, 67],[32, 210, 90],[45, 56, 189],[123, 56, 123],[56, 156, 200],
|
| 21 |
+
[189, 56, 45],[112, 200, 56],[56, 123, 45],[200, 32, 90],[123, 45, 78],[200, 156, 56],
|
| 22 |
+
[45, 67, 123],[56, 45, 78],[45, 56, 123],[123, 67, 56],[56, 78, 123],[210, 90, 32],
|
| 23 |
+
[123, 56, 189],[45, 200, 134],[67, 123, 56],[123, 45, 67],[90, 32, 210],[200, 45, 78],
|
| 24 |
+
[32, 210, 90],[45, 123, 67],[165, 42, 87],[72, 145, 167],[15, 158, 75],[209, 89, 40],
|
| 25 |
+
[32, 21, 121],[184, 20, 100],[56, 135, 15],[128, 92, 176],[1, 119, 140],[220, 151, 43],
|
| 26 |
+
[41, 97, 72],[148, 38, 27],[107, 86, 176],[21, 26, 136],[174, 27, 90],[91, 96, 204],
|
| 27 |
+
[108, 50, 107],[27, 45, 136],[168, 200, 52],[7, 102, 27],[42, 93, 56],[140, 52, 112],
|
| 28 |
+
[92, 107, 168],[17, 118, 176],[59, 50, 174],[206, 40, 143],[44, 19, 142],[23, 168, 75],
|
| 29 |
+
[54, 57, 189],[144, 21, 15],[15, 176, 35],[107, 19, 79],[204, 52, 114],[48, 173, 83],
|
| 30 |
+
[11, 120, 53],[206, 104, 28],[20, 31, 153],[27, 21, 93],[11, 206, 138],[112, 30, 83],
|
| 31 |
+
[68, 91, 152],[153, 13, 43],[25, 114, 54],[92, 27, 150],[108, 42, 59],[194, 77, 5],
|
| 32 |
+
[145, 48, 83],[7, 113, 19],[25, 92, 113],[60, 168, 79],[78, 33, 120],[89, 176, 205],
|
| 33 |
+
[27, 200, 94],[210, 67, 23],[123, 89, 189],[225, 56, 112],[75, 156, 45],[172, 104, 200],
|
| 34 |
+
[15, 170, 197],[240, 133, 65],[89, 156, 112],[214, 88, 57],[156, 134, 200],[78, 57, 189],
|
| 35 |
+
[200, 78, 123],[106, 120, 210],[145, 56, 112],[89, 120, 189],[185, 206, 56],[47, 99, 28],
|
| 36 |
+
[112, 189, 78],[200, 112, 89],[89, 145, 112],[78, 106, 189],[112, 78, 189],[156, 112, 78],
|
| 37 |
+
[28, 210, 99],[78, 89, 189],[189, 78, 57],[112, 200, 78],[189, 47, 78],[205, 112, 57],
|
| 38 |
+
[78, 145, 57],[200, 78, 112],[99, 89, 145],[200, 156, 78],[57, 78, 145],[78, 57, 99],
|
| 39 |
+
[57, 78, 145],[145, 112, 78],[78, 89, 145],[210, 99, 28],[145, 78, 189],[57, 200, 136],
|
| 40 |
+
[89, 156, 78],[145, 78, 99],[99, 28, 210],[189, 78, 47],[28, 210, 99],[78, 145, 57],
|
| 41 |
+
]
|
| 42 |
+
|
| 43 |
+
labels_list = []
|
| 44 |
+
with open("labels.txt", "r", encoding="utf-8") as fp:
|
| 45 |
+
for line in fp:
|
| 46 |
+
labels_list.append(line.rstrip("\n"))
|
| 47 |
+
|
| 48 |
+
colormap = np.asarray(ade_palette(), dtype=np.uint8)
|
| 49 |
+
|
| 50 |
+
def label_to_color_image(label):
|
| 51 |
+
if label.ndim != 2:
|
| 52 |
+
raise ValueError("Expect 2-D input label")
|
| 53 |
+
if np.max(label) >= len(colormap):
|
| 54 |
+
raise ValueError("label value too large.")
|
| 55 |
+
return colormap[label]
|
| 56 |
+
|
| 57 |
+
def draw_plot(pred_img, seg_np):
|
| 58 |
+
fig = plt.figure(figsize=(20, 15))
|
| 59 |
+
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
|
| 60 |
+
|
| 61 |
+
plt.subplot(grid_spec[0])
|
| 62 |
+
plt.imshow(pred_img)
|
| 63 |
+
plt.axis('off')
|
| 64 |
+
|
| 65 |
+
LABEL_NAMES = np.asarray(labels_list)
|
| 66 |
+
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
|
| 67 |
+
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
|
| 68 |
+
|
| 69 |
+
unique_labels = np.unique(seg_np.astype("uint8"))
|
| 70 |
+
ax = plt.subplot(grid_spec[1])
|
| 71 |
+
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
|
| 72 |
+
ax.yaxis.tick_right()
|
| 73 |
+
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
|
| 74 |
+
plt.xticks([], [])
|
| 75 |
+
ax.tick_params(width=0.0, labelsize=25)
|
| 76 |
+
return fig
|
| 77 |
+
|
| 78 |
+
def run_inference(input_img):
|
| 79 |
+
# input: numpy array from gradio -> PIL
|
| 80 |
+
img = Image.fromarray(input_img.astype(np.uint8)) if isinstance(input_img, np.ndarray) else input_img
|
| 81 |
+
if img.mode != "RGB":
|
| 82 |
+
img = img.convert("RGB")
|
| 83 |
+
|
| 84 |
+
inputs = processor(images=img, return_tensors="pt")
|
| 85 |
+
with torch.no_grad():
|
| 86 |
+
outputs = model(**inputs)
|
| 87 |
+
logits = outputs.logits # (1, C, h/4, w/4)
|
| 88 |
+
|
| 89 |
+
# resize to original
|
| 90 |
+
upsampled = torch.nn.functional.interpolate(
|
| 91 |
+
logits, size=img.size[::-1], mode="bilinear", align_corners=False
|
| 92 |
+
)
|
| 93 |
+
seg = upsampled.argmax(dim=1)[0].cpu().numpy().astype(np.uint8) # (H,W)
|
| 94 |
+
|
| 95 |
+
# colorize & overlay
|
| 96 |
+
color_seg = colormap[seg] # (H,W,3)
|
| 97 |
+
pred_img = (np.array(img) * 0.5 + color_seg * 0.5).astype(np.uint8)
|
| 98 |
+
|
| 99 |
+
fig = draw_plot(pred_img, seg)
|
| 100 |
+
return fig
|
| 101 |
+
|
| 102 |
+
demo = gr.Interface(
|
| 103 |
+
fn=run_inference,
|
| 104 |
+
inputs=gr.Image(type="numpy", label="Input Image"),
|
| 105 |
+
outputs=gr.Plot(label="Overlay + Legend"),
|
| 106 |
+
examples=[
|
| 107 |
+
"person-1.jpg",
|
| 108 |
+
"person-2.jpg",
|
| 109 |
+
"person-3.jpg",
|
| 110 |
+
"person-4.jpg",
|
| 111 |
+
"person-5.jpg"
|
| 112 |
+
],
|
| 113 |
+
flagging_mode="never",
|
| 114 |
+
cache_examples=False,
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
if __name__ == "__main__":
|
| 118 |
+
demo.launch()
|
labels.txt
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
wall
|
| 2 |
+
building
|
| 3 |
+
sky
|
| 4 |
+
floor
|
| 5 |
+
tree
|
| 6 |
+
ceiling
|
| 7 |
+
road
|
| 8 |
+
bed
|
| 9 |
+
windowpane
|
| 10 |
+
grass
|
| 11 |
+
cabinet
|
| 12 |
+
sidewalk
|
| 13 |
+
person
|
| 14 |
+
earth
|
| 15 |
+
door
|
| 16 |
+
table
|
| 17 |
+
mountain
|
| 18 |
+
plant
|
| 19 |
+
curtain
|
| 20 |
+
chair
|
| 21 |
+
car
|
| 22 |
+
water
|
| 23 |
+
painting
|
| 24 |
+
sofa
|
| 25 |
+
shelf
|
| 26 |
+
house
|
| 27 |
+
sea
|
| 28 |
+
mirror
|
| 29 |
+
rug
|
| 30 |
+
field
|
| 31 |
+
armchair
|
| 32 |
+
seat
|
| 33 |
+
fence
|
| 34 |
+
desk
|
| 35 |
+
rock
|
| 36 |
+
wardrobe
|
| 37 |
+
lamp
|
| 38 |
+
bathtub
|
| 39 |
+
railing
|
| 40 |
+
cushion
|
| 41 |
+
base
|
| 42 |
+
box
|
| 43 |
+
column
|
| 44 |
+
signboard
|
| 45 |
+
chest of drawers
|
| 46 |
+
counter
|
| 47 |
+
sand
|
| 48 |
+
sink
|
| 49 |
+
skyscraper
|
| 50 |
+
fireplace
|
| 51 |
+
refrigerator
|
| 52 |
+
grandstand
|
| 53 |
+
path
|
| 54 |
+
stairs
|
| 55 |
+
runway
|
| 56 |
+
case
|
| 57 |
+
pool table
|
| 58 |
+
pillow
|
| 59 |
+
screen door
|
| 60 |
+
stairway
|
| 61 |
+
river
|
| 62 |
+
bridge
|
| 63 |
+
bookcase
|
| 64 |
+
blind
|
| 65 |
+
coffee table
|
| 66 |
+
toilet
|
| 67 |
+
flower
|
| 68 |
+
book
|
| 69 |
+
hill
|
| 70 |
+
bench
|
| 71 |
+
countertop
|
| 72 |
+
stove
|
| 73 |
+
palm
|
| 74 |
+
kitchen island
|
| 75 |
+
computer
|
| 76 |
+
swivel chair
|
| 77 |
+
boat
|
| 78 |
+
bar
|
| 79 |
+
arcade machine
|
| 80 |
+
hovel
|
| 81 |
+
bus
|
| 82 |
+
towel
|
| 83 |
+
light
|
| 84 |
+
truck
|
| 85 |
+
tower
|
| 86 |
+
chandelier
|
| 87 |
+
awning
|
| 88 |
+
streetlight
|
| 89 |
+
booth
|
| 90 |
+
television receiver
|
| 91 |
+
airplane
|
| 92 |
+
dirt track
|
| 93 |
+
apparel
|
| 94 |
+
pole
|
| 95 |
+
land
|
| 96 |
+
bannister
|
| 97 |
+
escalator
|
| 98 |
+
ottoman
|
| 99 |
+
bottle
|
| 100 |
+
buffet
|
| 101 |
+
poster
|
| 102 |
+
stage
|
| 103 |
+
van
|
| 104 |
+
ship
|
| 105 |
+
fountain
|
| 106 |
+
conveyer belt
|
| 107 |
+
canopy
|
| 108 |
+
washer
|
| 109 |
+
plaything
|
| 110 |
+
swimming pool
|
| 111 |
+
stool
|
| 112 |
+
barrel
|
| 113 |
+
basket
|
| 114 |
+
waterfall
|
| 115 |
+
tent
|
| 116 |
+
bag
|
| 117 |
+
minibike
|
| 118 |
+
cradle
|
| 119 |
+
oven
|
| 120 |
+
ball
|
| 121 |
+
food
|
| 122 |
+
step
|
| 123 |
+
tank
|
| 124 |
+
trade name
|
| 125 |
+
microwave
|
| 126 |
+
pot
|
| 127 |
+
animal
|
| 128 |
+
bicycle
|
| 129 |
+
lake
|
| 130 |
+
dishwasher
|
| 131 |
+
screen
|
| 132 |
+
blanket
|
| 133 |
+
sculpture
|
| 134 |
+
hood
|
| 135 |
+
sconce
|
| 136 |
+
vase
|
| 137 |
+
traffic light
|
| 138 |
+
tray
|
| 139 |
+
ashcan
|
| 140 |
+
fan
|
| 141 |
+
pier
|
| 142 |
+
crt screen
|
| 143 |
+
plate
|
| 144 |
+
monitor
|
| 145 |
+
bulletin board
|
| 146 |
+
shower
|
| 147 |
+
radiator
|
| 148 |
+
glass
|
| 149 |
+
clock
|
| 150 |
+
flag
|
person-1.jpg
ADDED
|
person-2.jpg
ADDED
|
person-3.jpg
ADDED
|
person-4.jpg
ADDED
|
person-5.jpg
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers>=4.41.0
|
| 3 |
+
gradio>=4.0.0
|
| 4 |
+
Pillow
|
| 5 |
+
numpy
|
| 6 |
+
matplotlib
|