Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
| # Model ID | |
| model_id = "large-traversaal/Alif-1.0-8B-Instruct" | |
| # Load tokenizer and model (CPU-friendly) | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cpu") # Changed to CPU | |
| # Create text generation pipeline | |
| chatbot = pipeline("text-generation", model=model, tokenizer=tokenizer, device="cpu") # Ensuring CPU use | |
| # Function to generate responses | |
| def chat(message): | |
| response = chatbot(message, max_new_tokens=100, do_sample=True, temperature=0.3) | |
| return response[0]["generated_text"] | |
| # Gradio UI | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# π€ Alif Chatbot - Urdu Language AI Model") | |
| user_input = gr.Textbox(label="User Input", placeholder="Ψ§ΩΎΩΨ§ Ψ³ΩΨ§Ω ΫΫΨ§ΪΊ ΩΪ©ΪΎΫΪΊ...") | |
| submit_btn = gr.Button("Send") | |
| bot_response = gr.Textbox(label="AI Response") | |
| submit_btn.click(fn=chat, inputs=user_input, outputs=bot_response) | |
| # Launch the app | |
| if __name__ == "__main__": | |
| demo.launch() | |