Spaces:
Sleeping
Sleeping
Rivalcoder
commited on
Commit
·
884137e
1
Parent(s):
4ec17bd
Add Files
Browse files- app.py +77 -0
- models/convnext_base_finetuned.pth +3 -0
- requirements.txt +11 -0
app.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from fastapi import FastAPI, File, UploadFile
|
| 4 |
+
from fastapi.responses import JSONResponse
|
| 5 |
+
from transformers import ConvNextForImageClassification, AutoImageProcessor
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import io
|
| 8 |
+
|
| 9 |
+
# Class names (for skin diseases)
|
| 10 |
+
class_names = [
|
| 11 |
+
'Acne and Rosacea Photos', 'Actinic Keratosis Basal Cell Carcinoma and other Malignant Lesions', 'Atopic Dermatitis Photos',
|
| 12 |
+
'Bullous Disease Photos', 'Cellulitis Impetigo and other Bacterial Infections', 'Eczema Photos', 'Exanthems and Drug Eruptions',
|
| 13 |
+
'Hair Loss Photos Alopecia and other Hair Diseases', 'Herpes HPV and other STDs Photos', 'Light Diseases and Disorders of Pigmentation',
|
| 14 |
+
'Lupus and other Connective Tissue diseases', 'Melanoma Skin Cancer Nevi and Moles', 'Nail Fungus and other Nail Disease',
|
| 15 |
+
'Poison Ivy Photos and other Contact Dermatitis', 'Psoriasis pictures Lichen Planus and related diseases',
|
| 16 |
+
'Scabies Lyme Disease and other Infestations and Bites', 'Seborrheic Keratoses and other Benign Tumors', 'Systemic Disease',
|
| 17 |
+
'Tinea Ringworm Candidiasis and other Fungal Infections', 'Urticaria Hives', 'Vascular Tumors', 'Vasculitis Photos',
|
| 18 |
+
'Warts Molluscum and other Viral Infections'
|
| 19 |
+
]
|
| 20 |
+
|
| 21 |
+
# Load model and processor
|
| 22 |
+
model = ConvNextForImageClassification.from_pretrained("facebook/convnext-base-224")
|
| 23 |
+
model.classifier = torch.nn.Linear(in_features=1024, out_features=23)
|
| 24 |
+
model.load_state_dict(torch.load("./models/convnext_base_finetuned.pth", map_location="cpu"))
|
| 25 |
+
model.eval()
|
| 26 |
+
|
| 27 |
+
processor = AutoImageProcessor.from_pretrained("facebook/convnext-base-224")
|
| 28 |
+
|
| 29 |
+
# FastAPI app
|
| 30 |
+
app = FastAPI()
|
| 31 |
+
|
| 32 |
+
# Helper function for processing the image
|
| 33 |
+
def predict(image: Image.Image):
|
| 34 |
+
# Preprocess the image
|
| 35 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 36 |
+
|
| 37 |
+
# Perform inference
|
| 38 |
+
with torch.no_grad():
|
| 39 |
+
outputs = model(**inputs)
|
| 40 |
+
predicted_class = torch.argmax(outputs.logits, dim=1).item()
|
| 41 |
+
|
| 42 |
+
return predicted_class, class_names[predicted_class]
|
| 43 |
+
|
| 44 |
+
# FastAPI endpoint to handle image upload and prediction
|
| 45 |
+
@app.post("/predict/")
|
| 46 |
+
async def predict_endpoint(file: UploadFile = File(...)):
|
| 47 |
+
try:
|
| 48 |
+
# Read and process the image
|
| 49 |
+
img_bytes = await file.read()
|
| 50 |
+
img = Image.open(io.BytesIO(img_bytes))
|
| 51 |
+
|
| 52 |
+
# Get the prediction
|
| 53 |
+
predicted_class, predicted_name = predict(img)
|
| 54 |
+
|
| 55 |
+
# Return the result as JSON
|
| 56 |
+
return JSONResponse(content={"predicted_class": predicted_class, "predicted_name": predicted_name})
|
| 57 |
+
|
| 58 |
+
except Exception as e:
|
| 59 |
+
return JSONResponse(content={"error": str(e)}, status_code=500)
|
| 60 |
+
|
| 61 |
+
# Gradio function to integrate with the FastAPI prediction
|
| 62 |
+
def gradio_predict(image: Image.Image):
|
| 63 |
+
predicted_class, predicted_name = predict(image)
|
| 64 |
+
return f"Predicted Class: {predicted_name}"
|
| 65 |
+
|
| 66 |
+
# Gradio Interface
|
| 67 |
+
iface = gr.Interface(fn=gradio_predict, inputs=gr.Image(type="pil"), outputs=gr.Textbox())
|
| 68 |
+
|
| 69 |
+
# Serve Gradio interface on FastAPI
|
| 70 |
+
@app.get("/gradio/")
|
| 71 |
+
async def gradio_interface():
|
| 72 |
+
return iface.launch(share=True, inline=True)
|
| 73 |
+
|
| 74 |
+
# Run the FastAPI app using Uvicorn
|
| 75 |
+
if __name__ == "__main__":
|
| 76 |
+
import uvicorn
|
| 77 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
models/convnext_base_finetuned.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6c8dadf0c017fd3749a0dc291a1d9249bdba618c6351964d1fe65a85c07a578b
|
| 3 |
+
size 350500802
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn
|
| 3 |
+
torch
|
| 4 |
+
torchvision
|
| 5 |
+
opencv-python
|
| 6 |
+
numpy
|
| 7 |
+
Pillow
|
| 8 |
+
python-multipart
|
| 9 |
+
gradio
|
| 10 |
+
transformers
|
| 11 |
+
|