Renangi commited on
Commit
008dffe
·
1 Parent(s): 2942435

add vector database changes

Browse files
ragbench_eval/pipeline.py CHANGED
@@ -6,6 +6,7 @@ from .retriever import ExampleRetriever
6
  from .generator import RAGGenerator
7
  from .judge import RAGJudge
8
  from .metrics import trace_from_attributes, compute_rmse_auc
 
9
 
10
 
11
  class RagBenchExperiment:
@@ -38,6 +39,13 @@ class RagBenchExperiment:
38
  def run_subset(self, subset: str) -> Dict[str, Any]:
39
  ds = self._load_subset(subset)
40
 
 
 
 
 
 
 
 
41
  y_true_rel: List[float] = []
42
  y_pred_rel: List[float] = []
43
  y_true_util: List[float] = []
@@ -54,9 +62,23 @@ class RagBenchExperiment:
54
  question = row["question"]
55
  docs_sentences_full = self._to_docs_sentences(row)
56
 
57
- doc_indices = self.retriever.rank_docs(
58
- question, docs_sentences_full, k=self.k
 
 
 
 
59
  )
 
 
 
 
 
 
 
 
 
 
60
  selected_docs = [docs_sentences_full[j] for j in doc_indices]
61
 
62
  answer = self.generator.generate(question, selected_docs)
 
6
  from .generator import RAGGenerator
7
  from .judge import RAGJudge
8
  from .metrics import trace_from_attributes, compute_rmse_auc
9
+ from .vector_db import SubsetVectorDB
10
 
11
 
12
  class RagBenchExperiment:
 
39
  def run_subset(self, subset: str) -> Dict[str, Any]:
40
  ds = self._load_subset(subset)
41
 
42
+ # Build or load the FAISS-based vector database for this subset.
43
+ # This writes index files under ``vector_store/<subset>/<split>/``
44
+ # the first time it is called and reuses them thereafter.
45
+ vector_db = SubsetVectorDB(subset=subset, split=self.split)
46
+ vector_db.build_or_load(ds)
47
+
48
+
49
  y_true_rel: List[float] = []
50
  y_pred_rel: List[float] = []
51
  y_true_util: List[float] = []
 
62
  question = row["question"]
63
  docs_sentences_full = self._to_docs_sentences(row)
64
 
65
+ # Try vector DB first: restrict retrieval to documents that
66
+ # belong to this particular example row (same ``i``).
67
+ hits = vector_db.search(
68
+ question,
69
+ k=self.k,
70
+ restrict_row_index=i,
71
  )
72
+
73
+ if hits:
74
+ doc_indices = [doc_idx for _, doc_idx, _ in hits]
75
+ else:
76
+ # Fallback to the original hybrid (BM25 + dense) retriever
77
+ # operating only over this example's documents.
78
+ doc_indices = self.retriever.rank_docs(
79
+ question, docs_sentences_full, k=self.k
80
+ )
81
+
82
  selected_docs = [docs_sentences_full[j] for j in doc_indices]
83
 
84
  answer = self.generator.generate(question, selected_docs)
ragbench_eval/vector_db.py ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from __future__ import annotations
3
+
4
+ import json
5
+ from pathlib import Path
6
+ from typing import Any, Dict, List, Tuple, Optional
7
+
8
+ import faiss
9
+ import numpy as np
10
+ from datasets import Dataset, load_dataset
11
+ from sentence_transformers import SentenceTransformer
12
+
13
+ from .config import RAGBENCH_DATASET, EMBEDDING_MODEL
14
+
15
+
16
+ class SubsetVectorDB:
17
+ """
18
+ Simple FAISS-based vector database for a single RAGBench subset + split.
19
+
20
+ This class is intentionally lightweight and file-based:
21
+ - Each (subset, split) pair gets its own folder under ``vector_store/``.
22
+ - We build a single FAISS index over all documents' concatenated text.
23
+ - We also persist a small ``meta.json`` mapping index -> (row_index, doc_index).
24
+
25
+ At evaluation time we can:
26
+ - Lazily build the index once (or load it if it already exists).
27
+ - Retrieve the top-k most similar documents for a given question.
28
+ - Optionally restrict results to a particular example row.
29
+ """
30
+
31
+ def __init__(
32
+ self,
33
+ subset: str,
34
+ split: str = "test",
35
+ root_dir: Optional[Path] = None,
36
+ ) -> None:
37
+ self.subset = subset
38
+ self.split = split
39
+
40
+ project_root = Path(__file__).resolve().parents[1]
41
+ self.root_dir = (root_dir or project_root / "vector_store").resolve()
42
+ self.index_dir = self.root_dir / subset / split
43
+ self.index_dir.mkdir(parents=True, exist_ok=True)
44
+
45
+ self.index_path = self.index_dir / "index.faiss"
46
+ self.meta_path = self.index_dir / "meta.json"
47
+
48
+ # Will be populated by ``build_or_load``
49
+ self.embedder: Optional[SentenceTransformer] = None
50
+ self.index: Optional[faiss.Index] = None
51
+ self.meta: List[Dict[str, Any]] = []
52
+
53
+ # ------------------------------------------------------------------
54
+ # Internal helpers
55
+ # ------------------------------------------------------------------
56
+ def _load_embedder(self) -> SentenceTransformer:
57
+ if self.embedder is None:
58
+ self.embedder = SentenceTransformer(EMBEDDING_MODEL)
59
+ return self.embedder
60
+
61
+ def _load_index_files(self) -> bool:
62
+ """
63
+ Try to load index + meta files from disk.
64
+
65
+ Returns True if successful, False if anything is missing.
66
+ """
67
+ if not self.index_path.exists() or not self.meta_path.exists():
68
+ return False
69
+
70
+ self.index = faiss.read_index(str(self.index_path))
71
+ with self.meta_path.open("r", encoding="utf-8") as f:
72
+ self.meta = json.load(f)
73
+ return True
74
+
75
+ # ------------------------------------------------------------------
76
+ # Public API
77
+ # ------------------------------------------------------------------
78
+ def build_or_load(self, ds: Optional[Dataset] = None) -> None:
79
+ """
80
+ Ensure the FAISS index exists for (subset, split).
81
+
82
+ If the index files are already on disk we simply load them.
83
+ Otherwise we:
84
+ - iterate over the dataset
85
+ - concatenate each document's sentences into a single string
86
+ - build a dense embedding using SentenceTransformers
87
+ - create a cosine-similarity FAISS index and persist it
88
+ """
89
+ if self._load_index_files():
90
+ return
91
+
92
+ if ds is None:
93
+ ds = load_dataset(RAGBENCH_DATASET, self.subset, split=self.split)
94
+
95
+ texts: List[str] = []
96
+ meta: List[Dict[str, Any]] = []
97
+
98
+ for row_idx, row in enumerate(ds):
99
+ # ``documents_sentences`` is a list of docs;
100
+ # each doc is a list of (sentence_key, sentence_text) pairs.
101
+ for doc_idx, doc in enumerate(row["documents_sentences"]):
102
+ doc_text = " ".join(sentence_text for _, sentence_text in doc)
103
+ texts.append(doc_text)
104
+ meta.append({"row_index": int(row_idx), "doc_index": int(doc_idx)})
105
+
106
+ if not texts:
107
+ raise ValueError(
108
+ f"No documents found while building vector DB for subset={self.subset}, split={self.split}"
109
+ )
110
+
111
+ embedder = self._load_embedder()
112
+ embeddings = embedder.encode(
113
+ texts,
114
+ batch_size=32,
115
+ show_progress_bar=True,
116
+ convert_to_numpy=True,
117
+ )
118
+
119
+ # FAISS expects float32
120
+ embeddings = np.asarray(embeddings, dtype="float32")
121
+ # Use cosine similarity via inner product on L2-normalized vectors
122
+ faiss.normalize_L2(embeddings)
123
+
124
+ dim = embeddings.shape[1]
125
+ index = faiss.IndexFlatIP(dim)
126
+ index.add(embeddings)
127
+
128
+ # Persist to disk so subsequent runs are cheap
129
+ faiss.write_index(index, str(self.index_path))
130
+ with self.meta_path.open("w", encoding="utf-8") as f:
131
+ json.dump(meta, f, indent=2)
132
+
133
+ self.index = index
134
+ self.meta = meta
135
+
136
+ def search(
137
+ self,
138
+ query: str,
139
+ k: int = 10,
140
+ restrict_row_index: Optional[int] = None,
141
+ ) -> List[Tuple[int, int, float]]:
142
+ """
143
+ Search the vector DB for the top-k documents relevant to ``query``.
144
+
145
+ Returns a list of (row_index, doc_index, score) tuples.
146
+ If ``restrict_row_index`` is provided, we will over-sample and then
147
+ filter to only documents that belong to that example row.
148
+ """
149
+ if self.index is None or not self.meta:
150
+ if not self._load_index_files():
151
+ raise RuntimeError(
152
+ "Vector DB has not been built yet. Call build_or_load() first."
153
+ )
154
+
155
+ embedder = self._load_embedder()
156
+ q_emb = embedder.encode([query], convert_to_numpy=True)
157
+ q_emb = np.asarray(q_emb, dtype="float32")
158
+ faiss.normalize_L2(q_emb)
159
+
160
+ # For restricted searches we over-sample so that filtering still leaves
161
+ # enough candidates. For unrestricted we just use k.
162
+ search_k = k * 10 if restrict_row_index is not None else k
163
+ search_k = max(search_k, k)
164
+
165
+ scores, indices = self.index.search(q_emb, search_k)
166
+ scores = scores[0]
167
+ indices = indices[0]
168
+
169
+ results: List[Tuple[int, int, float]] = []
170
+ for idx, score in zip(indices, scores):
171
+ if idx < 0 or idx >= len(self.meta):
172
+ continue
173
+ meta = self.meta[int(idx)]
174
+ row_index = meta["row_index"]
175
+ doc_index = meta["doc_index"]
176
+
177
+ if restrict_row_index is not None and row_index != restrict_row_index:
178
+ continue
179
+
180
+ results.append((row_index, doc_index, float(score)))
181
+ if len(results) >= k:
182
+ break
183
+
184
+ return results
requirements.txt CHANGED
@@ -11,3 +11,4 @@ groq==0.9.0
11
  httpx==0.27.2
12
  rank-bm25==0.2.2
13
 
 
 
11
  httpx==0.27.2
12
  rank-bm25==0.2.2
13
 
14
+ faiss-cpu==1.8.0.post1