STT_Model / app.py
Raju2024's picture
Update app.py
1a819f5 verified
import os, asyncio, json, base64, time, tempfile, io
from typing import Optional, Dict, Any
from contextlib import asynccontextmanager
import torch, numpy as np, uvicorn
from fastapi import FastAPI, WebSocket, WebSocketDisconnect, Query, File, UploadFile, Form, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from loguru import logger
import librosa
from pydantic import BaseModel
# --- Moshi Streaming Imports ---
from moshi.models import loaders, MimiModel, LMModel, LMGen
import sentencepiece
# --- OpenAI Whisper API Compatible Response Models ---
class TranscriptionWord(BaseModel):
word: str
start: float
end: float
class TranscriptionSegment(BaseModel):
id: int
seek: float
start: float
end: float
text: str
tokens: list[int] = []
temperature: float = 0.0
avg_logprob: float = 0.0
compression_ratio: float = 0.0
no_speech_prob: float = 0.0
words: Optional[list[TranscriptionWord]] = None
class TranscriptionResponse(BaseModel):
text: str
task: str = "transcribe"
language: str = "en"
duration: float
segments: Optional[list[TranscriptionSegment]] = None
# --- Core Streaming Engine ---
class StreamingKyutaiEngine:
def __init__(self, device: str):
self.device = device
logger.info("πŸš€ Loading Moshi streaming model components...")
checkpoint_info = loaders.CheckpointInfo.from_hf_repo("kyutai/stt-1b-en_fr")
self.mimi: MimiModel = checkpoint_info.get_mimi(device=device)
self.text_tokenizer: sentencepiece.SentencePieceProcessor = checkpoint_info.get_text_tokenizer()
self.lm_model: LMModel = checkpoint_info.get_moshi(device=device)
self.frame_size = int(self.mimi.sample_rate / self.mimi.frame_rate)
self.sample_rate = self.mimi.sample_rate
self._model_loaded = True
# --- Lock to protect the stateful model ---
self.lock = asyncio.Lock()
logger.info(f"πŸŽ‰ Moshi streaming engine loaded on {self.device}")
logger.info(f"πŸ“Š Sample rate: {self.sample_rate}Hz, Frame size: {self.frame_size}")
async def transcribe_audio_file(self, audio_data: np.ndarray, sample_rate: int = None) -> tuple[str, float]:
"""Transcribe audio file and return (text, duration)"""
async with self.lock:
try:
# Resample if necessary
if sample_rate and sample_rate != self.sample_rate:
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=self.sample_rate)
duration = len(audio_data) / self.sample_rate
# Create a new generator and set up the streaming context
lm_gen = LMGen(self.lm_model, temp=0, temp_text=0, use_sampling=False)
transcription_text = ""
with self.mimi.streaming(batch_size=1), lm_gen.streaming(batch_size=1):
first_frame = True
# Process audio in chunks
for i in range(0, len(audio_data), self.frame_size):
chunk = audio_data[i:i + self.frame_size]
if len(chunk) == self.frame_size:
writable_chunk = chunk.copy()
in_pcms = torch.from_numpy(writable_chunk).to(self.device).unsqueeze(0).unsqueeze(0)
codes = self.mimi.encode(in_pcms)
if first_frame:
lm_gen.step(codes)
first_frame = False
tokens = lm_gen.step(codes)
if tokens is None:
continue
text_id = tokens[0, 0].cpu().item()
if text_id not in [0, 3]:
text_fragment = self.text_tokenizer.id_to_piece(text_id)
clean_fragment = text_fragment.replace("▁", " ")
transcription_text += clean_fragment
return transcription_text.strip(), duration
except Exception as e:
logger.error(f"Error transcribing audio: {e}")
return "", 0.0
# Global engine instance
stt_engine: Optional[StreamingKyutaiEngine] = None
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Modern FastAPI lifespan management"""
# Startup
global stt_engine
device = "cuda" if torch.cuda.is_available() else "cpu"
stt_engine = StreamingKyutaiEngine(device=device)
logger.info("βœ… Kyutai OpenAI Whisper API Compatible service is ready.")
yield
# Shutdown (if needed)
logger.info("πŸ”„ Shutting down Kyutai service...")
# --- FastAPI App Setup with modern lifespan ---
app = FastAPI(
title="Kyutai OpenAI Whisper API Compatible STT",
version="3.0.0",
lifespan=lifespan
)
app.add_middleware(CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"])
@app.get("/health")
async def health_check():
is_ready = stt_engine and stt_engine._model_loaded
if is_ready:
return {"status": "healthy", "model_loaded": True, "api_format": "openai_whisper_compatible"}
else:
return {"status": "unhealthy", "model_loaded": False}, 503
# --- OpenAI Whisper API Compatible Endpoints ---
@app.post("/v1/audio/transcriptions", response_model=TranscriptionResponse)
async def create_transcription(
file: UploadFile = File(...),
model: str = Form("whisper-1"),
language: Optional[str] = Form(None),
prompt: Optional[str] = Form(None),
response_format: str = Form("json"),
temperature: float = Form(0.0),
timestamp_granularities: Optional[str] = Form(None)
):
"""
OpenAI Whisper API Compatible transcription endpoint
Compatible with:
- OpenAI official clients
- Groq API clients
- Any Whisper API client
Just change the base_url to point here!
"""
if not stt_engine:
raise HTTPException(status_code=503, detail="STT engine not ready")
try:
# Read the uploaded file
audio_content = await file.read()
# Load audio using librosa (supports many formats)
audio_data, original_sr = librosa.load(io.BytesIO(audio_content), sr=None, mono=True)
logger.info(f"Processing audio file: {file.filename}, duration: {len(audio_data)/original_sr:.2f}s")
# Transcribe using Kyutai engine
transcription_text, duration = await stt_engine.transcribe_audio_file(audio_data, original_sr)
# Create OpenAI-compatible response
if response_format == "text":
from fastapi.responses import PlainTextResponse
return PlainTextResponse(content=transcription_text, media_type="text/plain")
elif response_format == "srt":
# Simple SRT format
srt_content = f"1\n00:00:00,000 --> {int(duration//60):02d}:{int(duration%60):02d},{int((duration%1)*1000):03d}\n{transcription_text}\n"
from fastapi.responses import PlainTextResponse
return PlainTextResponse(content=srt_content, media_type="text/plain")
elif response_format == "vtt":
# Simple VTT format
vtt_content = f"WEBVTT\n\n00:00:00.000 --> {int(duration//60):02d}:{int(duration%60):02d}.{int((duration%1)*1000):03d}\n{transcription_text}\n"
from fastapi.responses import PlainTextResponse
return PlainTextResponse(content=vtt_content, media_type="text/plain")
else:
# Default JSON response (OpenAI format)
segments = []
if transcription_text:
segments = [
TranscriptionSegment(
id=0,
seek=0.0,
start=0.0,
end=duration,
text=transcription_text,
tokens=[],
temperature=temperature,
avg_logprob=0.0,
compression_ratio=1.0,
no_speech_prob=0.0
)
]
return TranscriptionResponse(
text=transcription_text,
task="transcribe",
language=language or "en",
duration=duration,
segments=segments if timestamp_granularities else None
)
except Exception as e:
logger.error(f"Transcription error: {e}")
raise HTTPException(status_code=500, detail=f"Transcription failed: {str(e)}")
@app.post("/v1/audio/translations", response_model=TranscriptionResponse)
async def create_translation(
file: UploadFile = File(...),
model: str = Form("whisper-1"),
prompt: Optional[str] = Form(None),
response_format: str = Form("json"),
temperature: float = Form(0.0)
):
"""
OpenAI Whisper API Compatible translation endpoint
Note: Kyutai model outputs English, so this behaves the same as transcription
"""
# For now, treat translation the same as transcription since Kyutai outputs English
return await create_transcription(
file=file,
model=model,
language="en", # Force English for translation
prompt=prompt,
response_format=response_format,
temperature=temperature
)
# --- STREAMING WEBSOCKET ENDPOINTS (FULLY IMPLEMENTED) ---
@app.websocket("/v1/audio/stream")
async def streaming_websocket(websocket: WebSocket):
"""
Real-time audio streaming endpoint
Protocol:
1. Client connects
2. Server sends {"type": "ready", "sample_rate": 24000}
3. Client sends binary audio chunks (PCM float32, 24kHz, mono)
4. Server sends {"type": "transcription", "text": "...", "accumulated": "...", "is_final": false}
5. Client sends {"type": "finalize"} to get final transcription
6. Server sends {"type": "transcription", "text": "...", "is_final": true}
Commands:
- {"type": "finalize"} - Get final transcription
- {"type": "reset"} - Clear transcription buffer
- {"type": "stop"} - Close connection
"""
await websocket.accept()
if not stt_engine:
await websocket.close(code=1011, reason="STT engine not ready")
return
logger.info("πŸ”Œ New streaming connection established")
async with stt_engine.lock:
try:
# Initialize streaming context
lm_gen = LMGen(stt_engine.lm_model, temp=0, temp_text=0, use_sampling=False)
transcription_buffer = ""
audio_buffer = np.array([], dtype=np.float32)
first_frame = True
frames_processed = 0
with stt_engine.mimi.streaming(batch_size=1), lm_gen.streaming(batch_size=1):
# Send ready signal
await websocket.send_json({
"type": "ready",
"sample_rate": stt_engine.sample_rate,
"frame_size": stt_engine.frame_size
})
logger.info(f"βœ… Sent ready signal (sample_rate: {stt_engine.sample_rate}Hz)")
while True:
try:
message = await asyncio.wait_for(websocket.receive(), timeout=30.0)
except asyncio.TimeoutError:
logger.warning("⏱️ WebSocket timeout - no data received for 30s")
break
if message["type"] == "websocket.disconnect":
logger.info("πŸ‘‹ Client disconnected")
break
# Handle binary audio data
if message["type"] == "websocket.receive" and "bytes" in message:
audio_bytes = message["bytes"]
# Convert to float32 numpy array
audio_chunk = np.frombuffer(audio_bytes, dtype=np.float32)
# Add to buffer
audio_buffer = np.concatenate([audio_buffer, audio_chunk])
# Process complete frames
while len(audio_buffer) >= stt_engine.frame_size:
# Extract one frame
frame = audio_buffer[:stt_engine.frame_size]
audio_buffer = audio_buffer[stt_engine.frame_size:]
# Convert to torch tensor
in_pcms = torch.from_numpy(frame.copy()).to(stt_engine.device).unsqueeze(0).unsqueeze(0)
# Encode audio
codes = stt_engine.mimi.encode(in_pcms)
# Generate tokens
if first_frame:
lm_gen.step(codes)
first_frame = False
frames_processed += 1
continue
tokens = lm_gen.step(codes)
frames_processed += 1
if tokens is not None:
text_id = tokens[0, 0].cpu().item()
# Filter special tokens
if text_id not in [0, 3]:
text_fragment = stt_engine.text_tokenizer.id_to_piece(text_id)
clean_fragment = text_fragment.replace("▁", " ")
transcription_buffer += clean_fragment
# Send progressive transcription
await websocket.send_json({
"type": "transcription",
"text": clean_fragment,
"accumulated": transcription_buffer.strip(),
"is_final": False,
"frames_processed": frames_processed
})
logger.debug(f"πŸ“ Sent fragment: '{clean_fragment}'")
# Handle text commands
elif message["type"] == "websocket.receive" and "text" in message:
try:
data = json.loads(message["text"])
if data.get("type") == "finalize":
# Send final transcription
final_text = transcription_buffer.strip()
await websocket.send_json({
"type": "transcription",
"text": final_text,
"is_final": True,
"frames_processed": frames_processed
})
logger.info(f"βœ… Finalized transcription ({len(final_text)} chars, {frames_processed} frames)")
elif data.get("type") == "reset":
# Reset transcription buffer
transcription_buffer = ""
audio_buffer = np.array([], dtype=np.float32)
frames_processed = 0
await websocket.send_json({"type": "reset_confirmed"})
logger.info("πŸ”„ Transcription reset")
elif data.get("type") == "stop":
logger.info("πŸ›‘ Client requested stop")
break
except json.JSONDecodeError:
logger.error("❌ Invalid JSON received from client")
await websocket.send_json({"type": "error", "message": "Invalid JSON"})
except WebSocketDisconnect:
logger.info("πŸ”Œ WebSocket disconnected")
except Exception as e:
logger.error(f"❌ Streaming error: {e}", exc_info=True)
try:
await websocket.send_json({"type": "error", "message": str(e)})
except:
pass
finally:
try:
await websocket.close()
except:
pass
logger.info("πŸ”’ Streaming connection closed")
@app.websocket("/v1/realtime")
async def openai_realtime_websocket(
websocket: WebSocket,
model: str = Query(default="kyutai/stt-1b-en_fr")
):
"""
OpenAI Realtime API Compatible WebSocket endpoint
Protocol follows OpenAI's realtime API structure with session management
Events:
- session.created: Sent on connection
- input_audio_buffer.append: Client sends audio (base64 PCM16)
- conversation.item.input_audio_transcription.delta: Server sends partial text
- input_audio_buffer.commit: Client requests final transcription
- conversation.item.input_audio_transcription.completed: Server sends final text
- input_audio_buffer.clear: Clear buffers
"""
await websocket.accept()
if not stt_engine:
await websocket.close(code=1011, reason="STT engine not ready")
return
session_id = f"sess_{int(time.time())}_{id(websocket)}"
logger.info(f"πŸ”Œ New realtime session: {session_id}")
# Send session created event
await websocket.send_text(json.dumps({
"type": "session.created",
"session": {
"id": session_id,
"model": model,
"modalities": ["text", "audio"],
"instructions": "Real-time speech-to-text transcription using Kyutai Moshi model",
"voice": "kyutai",
"input_audio_format": "pcm16",
"output_audio_format": "pcm16",
"input_audio_transcription": {
"model": "kyutai-stt-1b"
},
"turn_detection": None,
"tools": [],
"tool_choice": "auto",
"temperature": 0.0,
"max_output_tokens": None
}
}))
async with stt_engine.lock:
try:
lm_gen = LMGen(stt_engine.lm_model, temp=0, temp_text=0, use_sampling=False)
transcription_buffer = ""
audio_buffer = np.array([], dtype=np.float32)
first_frame = True
item_id = f"item_{int(time.time())}"
with stt_engine.mimi.streaming(batch_size=1), lm_gen.streaming(batch_size=1):
while True:
try:
message = await asyncio.wait_for(websocket.receive(), timeout=30.0)
except asyncio.TimeoutError:
logger.warning(f"⏱️ Session {session_id} timeout")
break
if message["type"] == "websocket.disconnect":
break
# Handle text events (OpenAI format)
if message["type"] == "websocket.receive" and "text" in message:
try:
event = json.loads(message["text"])
if event.get("type") == "input_audio_buffer.append":
# Decode base64 audio (PCM16)
audio_b64 = event.get("audio", "")
audio_bytes = base64.b64decode(audio_b64)
# Convert PCM16 to float32 (-1.0 to 1.0)
audio_chunk = np.frombuffer(audio_bytes, dtype=np.int16).astype(np.float32) / 32768.0
audio_buffer = np.concatenate([audio_buffer, audio_chunk])
# Process frames
while len(audio_buffer) >= stt_engine.frame_size:
frame = audio_buffer[:stt_engine.frame_size]
audio_buffer = audio_buffer[stt_engine.frame_size:]
in_pcms = torch.from_numpy(frame.copy()).to(stt_engine.device).unsqueeze(0).unsqueeze(0)
codes = stt_engine.mimi.encode(in_pcms)
if first_frame:
lm_gen.step(codes)
first_frame = False
continue
tokens = lm_gen.step(codes)
if tokens is not None:
text_id = tokens[0, 0].cpu().item()
if text_id not in [0, 3]:
text_fragment = stt_engine.text_tokenizer.id_to_piece(text_id)
clean_fragment = text_fragment.replace("▁", " ")
transcription_buffer += clean_fragment
# Send delta (partial transcription)
await websocket.send_text(json.dumps({
"type": "conversation.item.input_audio_transcription.delta",
"item_id": item_id,
"content_index": 0,
"delta": clean_fragment
}))
logger.debug(f"πŸ“ Sent delta: '{clean_fragment}'")
elif event.get("type") == "input_audio_buffer.commit":
# Send final transcription
final_text = transcription_buffer.strip()
await websocket.send_text(json.dumps({
"type": "conversation.item.input_audio_transcription.completed",
"item_id": item_id,
"content_index": 0,
"transcript": final_text
}))
logger.info(f"βœ… Committed transcription: '{final_text}'")
transcription_buffer = ""
item_id = f"item_{int(time.time())}" # New item for next transcription
elif event.get("type") == "input_audio_buffer.clear":
# Clear buffers
audio_buffer = np.array([], dtype=np.float32)
transcription_buffer = ""
await websocket.send_text(json.dumps({
"type": "input_audio_buffer.cleared"
}))
logger.info("πŸ”„ Buffers cleared")
elif event.get("type") == "session.update":
# Acknowledge session update
await websocket.send_text(json.dumps({
"type": "session.updated",
"session": event.get("session", {})
}))
except json.JSONDecodeError:
logger.error("❌ Invalid JSON in realtime event")
except Exception as e:
logger.error(f"❌ Error processing event: {e}", exc_info=True)
await websocket.send_text(json.dumps({
"type": "error",
"error": {
"type": "processing_error",
"message": str(e)
}
}))
except WebSocketDisconnect:
logger.info(f"πŸ”Œ Realtime session {session_id} disconnected")
except Exception as e:
logger.error(f"❌ Realtime session error: {e}", exc_info=True)
finally:
try:
await websocket.close()
except:
pass
logger.info(f"πŸ”’ Realtime session {session_id} closed")
# --- Models endpoint (OpenAI compatible) ---
@app.get("/v1/models")
async def list_models():
"""OpenAI compatible models endpoint"""
return {
"object": "list",
"data": [
{
"id": "whisper-1",
"object": "model",
"created": 1677532384,
"owned_by": "kyutai",
"permission": [],
"root": "whisper-1",
"parent": None
},
{
"id": "kyutai/stt-1b-en_fr",
"object": "model",
"created": 1677532384,
"owned_by": "kyutai",
"permission": [],
"root": "kyutai/stt-1b-en_fr",
"parent": None
}
]
}
# --- Main Execution ---
if __name__ == "__main__":
port = int(os.getenv("PORT", 7860))
host = os.getenv("HOST", "0.0.0.0")
logger.info(f"πŸš€ Starting Kyutai OpenAI Whisper API Compatible service on {host}:{port}")
logger.info(f"πŸ“‹ Endpoints:")
logger.info(f" - POST http://{host}:{port}/v1/audio/transcriptions (File upload)")
logger.info(f" - WS ws://{host}:{port}/v1/audio/stream (Real-time streaming)")
logger.info(f" - WS ws://{host}:{port}/v1/realtime (OpenAI Realtime API)")
logger.info(f" - GET http://{host}:{port}/health (Health check)")
uvicorn.run(app, host=host, port=port, log_level="info")