Upload 3 files
Browse files- app.py +35 -0
- geochat_demo.py +706 -0
- pyproject.toml +39 -0
app.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from torchvision import transforms
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
# Load model
|
| 7 |
+
class MyModel(torch.nn.Module):
|
| 8 |
+
def __init__(self):
|
| 9 |
+
super().__init__()
|
| 10 |
+
# Define layers here
|
| 11 |
+
|
| 12 |
+
def forward(self, x):
|
| 13 |
+
# Forward pass
|
| 14 |
+
return x
|
| 15 |
+
|
| 16 |
+
model = MyModel()
|
| 17 |
+
model.load_state_dict(torch.load("model.pth"))
|
| 18 |
+
model.eval()
|
| 19 |
+
|
| 20 |
+
# Define image preprocessing
|
| 21 |
+
transform = transforms.Compose([
|
| 22 |
+
transforms.Resize((224, 224)),
|
| 23 |
+
transforms.ToTensor(),
|
| 24 |
+
])
|
| 25 |
+
|
| 26 |
+
# Define prediction function
|
| 27 |
+
def predict(image):
|
| 28 |
+
image = transform(image).unsqueeze(0) # Add batch dimension
|
| 29 |
+
with torch.no_grad():
|
| 30 |
+
output = model(image)
|
| 31 |
+
return output.numpy().tolist()
|
| 32 |
+
|
| 33 |
+
# Create Gradio interface
|
| 34 |
+
iface = gr.Interface(fn=predict, inputs=gr.Image(), outputs="json")
|
| 35 |
+
iface.launch()
|
geochat_demo.py
ADDED
|
@@ -0,0 +1,706 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import os
|
| 3 |
+
import random
|
| 4 |
+
from collections import defaultdict
|
| 5 |
+
|
| 6 |
+
import cv2
|
| 7 |
+
import re
|
| 8 |
+
import math
|
| 9 |
+
import numpy as np
|
| 10 |
+
from PIL import Image
|
| 11 |
+
import torch
|
| 12 |
+
import html
|
| 13 |
+
import gradio as gr
|
| 14 |
+
|
| 15 |
+
import torchvision.transforms as T
|
| 16 |
+
import torch.backends.cudnn as cudnn
|
| 17 |
+
|
| 18 |
+
from geochat.conversation import conv_templates, Chat
|
| 19 |
+
from geochat.model.builder import load_pretrained_model
|
| 20 |
+
from geochat.mm_utils import get_model_name_from_path
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def parse_args():
|
| 24 |
+
parser = argparse.ArgumentParser(description="Demo")
|
| 25 |
+
# parser = argparse.ArgumentParser()
|
| 26 |
+
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
| 27 |
+
parser.add_argument("--model-base", type=str, default=None)
|
| 28 |
+
parser.add_argument("--gpu-id", type=str,default=0)
|
| 29 |
+
parser.add_argument("--device", type=str, default="cuda")
|
| 30 |
+
parser.add_argument("--conv-mode", type=str, default=None)
|
| 31 |
+
parser.add_argument("--max-new-tokens", type=int, default=300)
|
| 32 |
+
parser.add_argument("--load-8bit", action="store_true")
|
| 33 |
+
parser.add_argument("--load-4bit", action="store_true")
|
| 34 |
+
parser.add_argument("--debug", action="store_true")
|
| 35 |
+
parser.add_argument("--image-aspect-ratio", type=str, default='pad')
|
| 36 |
+
# args = parser.parse_args()
|
| 37 |
+
args = parser.parse_args()
|
| 38 |
+
return args
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
random.seed(42)
|
| 42 |
+
np.random.seed(42)
|
| 43 |
+
torch.manual_seed(42)
|
| 44 |
+
|
| 45 |
+
cudnn.benchmark = False
|
| 46 |
+
cudnn.deterministic = True
|
| 47 |
+
|
| 48 |
+
print('Initializing Chat')
|
| 49 |
+
args = parse_args()
|
| 50 |
+
# cfg = Config(args)
|
| 51 |
+
|
| 52 |
+
model_name = get_model_name_from_path(args.model_path)
|
| 53 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device)
|
| 54 |
+
|
| 55 |
+
device = 'cuda:{}'.format(args.gpu_id)
|
| 56 |
+
|
| 57 |
+
# model_config = cfg.model_cfg
|
| 58 |
+
# model_config.device_8bit = args.gpu_id
|
| 59 |
+
# model_cls = registry.get_model_class(model_config.arch)
|
| 60 |
+
# model = model_cls.from_config(model_config).to(device)
|
| 61 |
+
bounding_box_size = 100
|
| 62 |
+
|
| 63 |
+
# vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train
|
| 64 |
+
# vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
|
| 65 |
+
|
| 66 |
+
model = model.eval()
|
| 67 |
+
|
| 68 |
+
CONV_VISION = conv_templates['llava_v1'].copy()
|
| 69 |
+
|
| 70 |
+
def bbox_and_angle_to_polygon(x1, y1, x2, y2, a):
|
| 71 |
+
# Calculate center coordinates
|
| 72 |
+
x_ctr = (x1 + x2) / 2
|
| 73 |
+
y_ctr = (y1 + y2) / 2
|
| 74 |
+
|
| 75 |
+
# Calculate width and height
|
| 76 |
+
w = abs(x2 - x1)
|
| 77 |
+
h = abs(y2 - y1)
|
| 78 |
+
|
| 79 |
+
# Calculate the angle in radians
|
| 80 |
+
angle_rad = math.radians(a)
|
| 81 |
+
|
| 82 |
+
# Calculate coordinates of the four corners of the rotated bounding box
|
| 83 |
+
cos_a = math.cos(angle_rad)
|
| 84 |
+
sin_a = math.sin(angle_rad)
|
| 85 |
+
|
| 86 |
+
x1_rot = cos_a * (-w / 2) - sin_a * (-h / 2) + x_ctr
|
| 87 |
+
y1_rot = sin_a * (-w / 2) + cos_a * (-h / 2) + y_ctr
|
| 88 |
+
|
| 89 |
+
x2_rot = cos_a * (w / 2) - sin_a * (-h / 2) + x_ctr
|
| 90 |
+
y2_rot = sin_a * (w / 2) + cos_a * (-h / 2) + y_ctr
|
| 91 |
+
|
| 92 |
+
x3_rot = cos_a * (w / 2) - sin_a * (h / 2) + x_ctr
|
| 93 |
+
y3_rot = sin_a * (w / 2) + cos_a * (h / 2) + y_ctr
|
| 94 |
+
|
| 95 |
+
x4_rot = cos_a * (-w / 2) - sin_a * (h / 2) + x_ctr
|
| 96 |
+
y4_rot = sin_a * (-w / 2) + cos_a * (h / 2) + y_ctr
|
| 97 |
+
|
| 98 |
+
# Return the polygon coordinates
|
| 99 |
+
polygon_coords = np.array((x1_rot, y1_rot, x2_rot, y2_rot, x3_rot, y3_rot, x4_rot, y4_rot))
|
| 100 |
+
|
| 101 |
+
return polygon_coords
|
| 102 |
+
|
| 103 |
+
def rotate_bbox(top_right, bottom_left, angle_degrees):
|
| 104 |
+
# Convert angle to radians
|
| 105 |
+
angle_radians = np.radians(angle_degrees)
|
| 106 |
+
|
| 107 |
+
# Calculate the center of the rectangle
|
| 108 |
+
center = ((top_right[0] + bottom_left[0]) / 2, (top_right[1] + bottom_left[1]) / 2)
|
| 109 |
+
|
| 110 |
+
# Calculate the width and height of the rectangle
|
| 111 |
+
width = top_right[0] - bottom_left[0]
|
| 112 |
+
height = top_right[1] - bottom_left[1]
|
| 113 |
+
|
| 114 |
+
# Create a rotation matrix
|
| 115 |
+
rotation_matrix = cv2.getRotationMatrix2D(center, angle_degrees, 1)
|
| 116 |
+
|
| 117 |
+
# Create an array of the rectangle corners
|
| 118 |
+
rectangle_points = np.array([[bottom_left[0], bottom_left[1]],
|
| 119 |
+
[top_right[0], bottom_left[1]],
|
| 120 |
+
[top_right[0], top_right[1]],
|
| 121 |
+
[bottom_left[0], top_right[1]]], dtype=np.float32)
|
| 122 |
+
|
| 123 |
+
# Rotate the rectangle points
|
| 124 |
+
rotated_rectangle = cv2.transform(np.array([rectangle_points]), rotation_matrix)[0]
|
| 125 |
+
|
| 126 |
+
return rotated_rectangle
|
| 127 |
+
def extract_substrings(string):
|
| 128 |
+
# first check if there is no-finished bracket
|
| 129 |
+
index = string.rfind('}')
|
| 130 |
+
if index != -1:
|
| 131 |
+
string = string[:index + 1]
|
| 132 |
+
|
| 133 |
+
pattern = r'<p>(.*?)\}(?!<)'
|
| 134 |
+
matches = re.findall(pattern, string)
|
| 135 |
+
substrings = [match for match in matches]
|
| 136 |
+
|
| 137 |
+
return substrings
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def is_overlapping(rect1, rect2):
|
| 141 |
+
x1, y1, x2, y2 = rect1
|
| 142 |
+
x3, y3, x4, y4 = rect2
|
| 143 |
+
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def computeIoU(bbox1, bbox2):
|
| 147 |
+
x1, y1, x2, y2 = bbox1
|
| 148 |
+
x3, y3, x4, y4 = bbox2
|
| 149 |
+
intersection_x1 = max(x1, x3)
|
| 150 |
+
intersection_y1 = max(y1, y3)
|
| 151 |
+
intersection_x2 = min(x2, x4)
|
| 152 |
+
intersection_y2 = min(y2, y4)
|
| 153 |
+
intersection_area = max(0, intersection_x2 - intersection_x1 + 1) * max(0, intersection_y2 - intersection_y1 + 1)
|
| 154 |
+
bbox1_area = (x2 - x1 + 1) * (y2 - y1 + 1)
|
| 155 |
+
bbox2_area = (x4 - x3 + 1) * (y4 - y3 + 1)
|
| 156 |
+
union_area = bbox1_area + bbox2_area - intersection_area
|
| 157 |
+
iou = intersection_area / union_area
|
| 158 |
+
return iou
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def save_tmp_img(visual_img):
|
| 162 |
+
file_name = "".join([str(random.randint(0, 9)) for _ in range(5)]) + ".jpg"
|
| 163 |
+
file_path = "/tmp/gradio" + file_name
|
| 164 |
+
visual_img.save(file_path)
|
| 165 |
+
return file_path
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def mask2bbox(mask):
|
| 169 |
+
if mask is None:
|
| 170 |
+
return ''
|
| 171 |
+
mask = mask.resize([100, 100], resample=Image.NEAREST)
|
| 172 |
+
mask = np.array(mask)[:, :, 0]
|
| 173 |
+
|
| 174 |
+
rows = np.any(mask, axis=1)
|
| 175 |
+
cols = np.any(mask, axis=0)
|
| 176 |
+
|
| 177 |
+
if rows.sum():
|
| 178 |
+
# Get the top, bottom, left, and right boundaries
|
| 179 |
+
rmin, rmax = np.where(rows)[0][[0, -1]]
|
| 180 |
+
cmin, cmax = np.where(cols)[0][[0, -1]]
|
| 181 |
+
bbox = '{{<{}><{}><{}><{}>}}'.format(cmin, rmin, cmax, rmax)
|
| 182 |
+
else:
|
| 183 |
+
bbox = ''
|
| 184 |
+
|
| 185 |
+
return bbox
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def escape_markdown(text):
|
| 189 |
+
# List of Markdown special characters that need to be escaped
|
| 190 |
+
md_chars = ['<', '>']
|
| 191 |
+
|
| 192 |
+
# Escape each special character
|
| 193 |
+
for char in md_chars:
|
| 194 |
+
text = text.replace(char, '\\' + char)
|
| 195 |
+
|
| 196 |
+
return text
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
def reverse_escape(text):
|
| 200 |
+
md_chars = ['\\<', '\\>']
|
| 201 |
+
|
| 202 |
+
for char in md_chars:
|
| 203 |
+
text = text.replace(char, char[1:])
|
| 204 |
+
|
| 205 |
+
return text
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
colors = [
|
| 209 |
+
(255, 0, 0),
|
| 210 |
+
(0, 255, 0),
|
| 211 |
+
(0, 0, 255),
|
| 212 |
+
(210, 210, 0),
|
| 213 |
+
(255, 0, 255),
|
| 214 |
+
(0, 255, 255),
|
| 215 |
+
(114, 128, 250),
|
| 216 |
+
(0, 165, 255),
|
| 217 |
+
(0, 128, 0),
|
| 218 |
+
(144, 238, 144),
|
| 219 |
+
(238, 238, 175),
|
| 220 |
+
(255, 191, 0),
|
| 221 |
+
(0, 128, 0),
|
| 222 |
+
(226, 43, 138),
|
| 223 |
+
(255, 0, 255),
|
| 224 |
+
(0, 215, 255),
|
| 225 |
+
]
|
| 226 |
+
|
| 227 |
+
color_map = {
|
| 228 |
+
f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for
|
| 229 |
+
color_id, color in enumerate(colors)
|
| 230 |
+
}
|
| 231 |
+
|
| 232 |
+
used_colors = colors
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
def visualize_all_bbox_together(image, generation):
|
| 236 |
+
if image is None:
|
| 237 |
+
return None, ''
|
| 238 |
+
|
| 239 |
+
generation = html.unescape(generation)
|
| 240 |
+
|
| 241 |
+
image_width, image_height = image.size
|
| 242 |
+
image = image.resize([500, int(500 / image_width * image_height)])
|
| 243 |
+
image_width, image_height = image.size
|
| 244 |
+
|
| 245 |
+
string_list = extract_substrings(generation)
|
| 246 |
+
if string_list: # it is grounding or detection
|
| 247 |
+
mode = 'all'
|
| 248 |
+
entities = defaultdict(list)
|
| 249 |
+
i = 0
|
| 250 |
+
j = 0
|
| 251 |
+
for string in string_list:
|
| 252 |
+
try:
|
| 253 |
+
obj, string = string.split('</p>')
|
| 254 |
+
except ValueError:
|
| 255 |
+
print('wrong string: ', string)
|
| 256 |
+
continue
|
| 257 |
+
if "}{" in string:
|
| 258 |
+
string=string.replace("}{","}<delim>{")
|
| 259 |
+
bbox_list = string.split('<delim>')
|
| 260 |
+
flag = False
|
| 261 |
+
for bbox_string in bbox_list:
|
| 262 |
+
integers = re.findall(r'-?\d+', bbox_string)
|
| 263 |
+
if len(integers)==4:
|
| 264 |
+
angle=0
|
| 265 |
+
else:
|
| 266 |
+
angle=integers[4]
|
| 267 |
+
integers=integers[:-1]
|
| 268 |
+
|
| 269 |
+
if len(integers) == 4:
|
| 270 |
+
x0, y0, x1, y1 = int(integers[0]), int(integers[1]), int(integers[2]), int(integers[3])
|
| 271 |
+
left = x0 / bounding_box_size * image_width
|
| 272 |
+
bottom = y0 / bounding_box_size * image_height
|
| 273 |
+
right = x1 / bounding_box_size * image_width
|
| 274 |
+
top = y1 / bounding_box_size * image_height
|
| 275 |
+
|
| 276 |
+
entities[obj].append([left, bottom, right, top,angle])
|
| 277 |
+
|
| 278 |
+
j += 1
|
| 279 |
+
flag = True
|
| 280 |
+
if flag:
|
| 281 |
+
i += 1
|
| 282 |
+
else:
|
| 283 |
+
integers = re.findall(r'-?\d+', generation)
|
| 284 |
+
# if len(integers)==4:
|
| 285 |
+
angle=0
|
| 286 |
+
# else:
|
| 287 |
+
# angle=integers[4]
|
| 288 |
+
integers=integers[:-1]
|
| 289 |
+
if len(integers) == 4: # it is refer
|
| 290 |
+
mode = 'single'
|
| 291 |
+
|
| 292 |
+
entities = list()
|
| 293 |
+
x0, y0, x1, y1 = int(integers[0]), int(integers[1]), int(integers[2]), int(integers[3])
|
| 294 |
+
left = x0 / bounding_box_size * image_width
|
| 295 |
+
bottom = y0 / bounding_box_size * image_height
|
| 296 |
+
right = x1 / bounding_box_size * image_width
|
| 297 |
+
top = y1 / bounding_box_size * image_height
|
| 298 |
+
entities.append([left, bottom, right, top,angle])
|
| 299 |
+
else:
|
| 300 |
+
# don't detect any valid bbox to visualize
|
| 301 |
+
return None, ''
|
| 302 |
+
|
| 303 |
+
if len(entities) == 0:
|
| 304 |
+
return None, ''
|
| 305 |
+
|
| 306 |
+
if isinstance(image, Image.Image):
|
| 307 |
+
image_h = image.height
|
| 308 |
+
image_w = image.width
|
| 309 |
+
image = np.array(image)
|
| 310 |
+
|
| 311 |
+
elif isinstance(image, str):
|
| 312 |
+
if os.path.exists(image):
|
| 313 |
+
pil_img = Image.open(image).convert("RGB")
|
| 314 |
+
image = np.array(pil_img)[:, :, [2, 1, 0]]
|
| 315 |
+
image_h = pil_img.height
|
| 316 |
+
image_w = pil_img.width
|
| 317 |
+
else:
|
| 318 |
+
raise ValueError(f"invaild image path, {image}")
|
| 319 |
+
elif isinstance(image, torch.Tensor):
|
| 320 |
+
|
| 321 |
+
image_tensor = image.cpu()
|
| 322 |
+
reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
|
| 323 |
+
reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
|
| 324 |
+
image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
|
| 325 |
+
pil_img = T.ToPILImage()(image_tensor)
|
| 326 |
+
image_h = pil_img.height
|
| 327 |
+
image_w = pil_img.width
|
| 328 |
+
image = np.array(pil_img)[:, :, [2, 1, 0]]
|
| 329 |
+
else:
|
| 330 |
+
raise ValueError(f"invalid image format, {type(image)} for {image}")
|
| 331 |
+
|
| 332 |
+
indices = list(range(len(entities)))
|
| 333 |
+
|
| 334 |
+
new_image = image.copy()
|
| 335 |
+
|
| 336 |
+
previous_bboxes = []
|
| 337 |
+
# size of text
|
| 338 |
+
text_size = 0.4
|
| 339 |
+
# thickness of text
|
| 340 |
+
text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1))
|
| 341 |
+
box_line = 2
|
| 342 |
+
(c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
|
| 343 |
+
base_height = int(text_height * 0.675)
|
| 344 |
+
text_offset_original = text_height - base_height
|
| 345 |
+
text_spaces = 2
|
| 346 |
+
|
| 347 |
+
# num_bboxes = sum(len(x[-1]) for x in entities)
|
| 348 |
+
used_colors = colors # random.sample(colors, k=num_bboxes)
|
| 349 |
+
|
| 350 |
+
color_id = -1
|
| 351 |
+
for entity_idx, entity_name in enumerate(entities):
|
| 352 |
+
if mode == 'single' or mode == 'identify':
|
| 353 |
+
bboxes = entity_name
|
| 354 |
+
bboxes = [bboxes]
|
| 355 |
+
else:
|
| 356 |
+
bboxes = entities[entity_name]
|
| 357 |
+
color_id += 1
|
| 358 |
+
for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm,angle) in enumerate(bboxes):
|
| 359 |
+
skip_flag = False
|
| 360 |
+
orig_x1, orig_y1, orig_x2, orig_y2,angle = int(x1_norm), int(y1_norm), int(x2_norm), int(y2_norm), int(angle)
|
| 361 |
+
|
| 362 |
+
color = used_colors[entity_idx % len(used_colors)] # tuple(np.random.randint(0, 255, size=3).tolist())
|
| 363 |
+
top_right=(orig_x1,orig_y1)
|
| 364 |
+
bottom_left=(orig_x2,orig_y2)
|
| 365 |
+
angle=angle
|
| 366 |
+
rotated_bbox = rotate_bbox(top_right, bottom_left, angle)
|
| 367 |
+
new_image=cv2.polylines(new_image, [rotated_bbox.astype(np.int32)], isClosed=True,thickness=2, color=color)
|
| 368 |
+
|
| 369 |
+
# new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)
|
| 370 |
+
|
| 371 |
+
if mode == 'all':
|
| 372 |
+
l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1
|
| 373 |
+
|
| 374 |
+
x1 = orig_x1 - l_o
|
| 375 |
+
y1 = orig_y1 - l_o
|
| 376 |
+
|
| 377 |
+
if y1 < text_height + text_offset_original + 2 * text_spaces:
|
| 378 |
+
y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces
|
| 379 |
+
x1 = orig_x1 + r_o
|
| 380 |
+
|
| 381 |
+
# add text background
|
| 382 |
+
(text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size,
|
| 383 |
+
text_line)
|
| 384 |
+
text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (
|
| 385 |
+
text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1
|
| 386 |
+
|
| 387 |
+
for prev_bbox in previous_bboxes:
|
| 388 |
+
if computeIoU((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox['bbox']) > 0.95 and \
|
| 389 |
+
prev_bbox['phrase'] == entity_name:
|
| 390 |
+
skip_flag = True
|
| 391 |
+
break
|
| 392 |
+
while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox['bbox']):
|
| 393 |
+
text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces)
|
| 394 |
+
text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces)
|
| 395 |
+
y1 += (text_height + text_offset_original + 2 * text_spaces)
|
| 396 |
+
|
| 397 |
+
if text_bg_y2 >= image_h:
|
| 398 |
+
text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces))
|
| 399 |
+
text_bg_y2 = image_h
|
| 400 |
+
y1 = image_h
|
| 401 |
+
break
|
| 402 |
+
if not skip_flag:
|
| 403 |
+
alpha = 0.5
|
| 404 |
+
for i in range(text_bg_y1, text_bg_y2):
|
| 405 |
+
for j in range(text_bg_x1, text_bg_x2):
|
| 406 |
+
if i < image_h and j < image_w:
|
| 407 |
+
if j < text_bg_x1 + 1.35 * c_width:
|
| 408 |
+
# original color
|
| 409 |
+
bg_color = color
|
| 410 |
+
else:
|
| 411 |
+
# white
|
| 412 |
+
bg_color = [255, 255, 255]
|
| 413 |
+
new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(
|
| 414 |
+
np.uint8)
|
| 415 |
+
|
| 416 |
+
cv2.putText(
|
| 417 |
+
new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces),
|
| 418 |
+
cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA
|
| 419 |
+
)
|
| 420 |
+
|
| 421 |
+
previous_bboxes.append(
|
| 422 |
+
{'bbox': (text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), 'phrase': entity_name})
|
| 423 |
+
|
| 424 |
+
if mode == 'all':
|
| 425 |
+
def color_iterator(colors):
|
| 426 |
+
while True:
|
| 427 |
+
for color in colors:
|
| 428 |
+
yield color
|
| 429 |
+
|
| 430 |
+
color_gen = color_iterator(colors)
|
| 431 |
+
|
| 432 |
+
# Add colors to phrases and remove <p></p>
|
| 433 |
+
def colored_phrases(match):
|
| 434 |
+
phrase = match.group(1)
|
| 435 |
+
color = next(color_gen)
|
| 436 |
+
return f'<span style="color:rgb{color}">{phrase}</span>'
|
| 437 |
+
|
| 438 |
+
generation = re.sub(r'{<\d+><\d+><\d+><\d+>}|<delim>', '', generation)
|
| 439 |
+
generation_colored = re.sub(r'<p>(.*?)</p>', colored_phrases, generation)
|
| 440 |
+
else:
|
| 441 |
+
generation_colored = ''
|
| 442 |
+
|
| 443 |
+
pil_image = Image.fromarray(new_image)
|
| 444 |
+
return pil_image, generation_colored
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
def gradio_reset(chat_state, img_list):
|
| 448 |
+
if chat_state is not None:
|
| 449 |
+
chat_state.messages = []
|
| 450 |
+
if img_list is not None:
|
| 451 |
+
img_list = []
|
| 452 |
+
return None, gr.update(value=None, interactive=True), gr.update(placeholder='Upload your image and chat',
|
| 453 |
+
interactive=True), chat_state, img_list
|
| 454 |
+
|
| 455 |
+
|
| 456 |
+
def image_upload_trigger(upload_flag, replace_flag, img_list):
|
| 457 |
+
# set the upload flag to true when receive a new image.
|
| 458 |
+
# if there is an old image (and old conversation), set the replace flag to true to reset the conv later.
|
| 459 |
+
upload_flag = 1
|
| 460 |
+
if img_list:
|
| 461 |
+
replace_flag = 1
|
| 462 |
+
return upload_flag, replace_flag
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
def example_trigger(text_input, image, upload_flag, replace_flag, img_list):
|
| 466 |
+
# set the upload flag to true when receive a new image.
|
| 467 |
+
# if there is an old image (and old conversation), set the replace flag to true to reset the conv later.
|
| 468 |
+
upload_flag = 1
|
| 469 |
+
if img_list or replace_flag == 1:
|
| 470 |
+
replace_flag = 1
|
| 471 |
+
|
| 472 |
+
return upload_flag, replace_flag
|
| 473 |
+
|
| 474 |
+
|
| 475 |
+
def gradio_ask(user_message, chatbot, chat_state, gr_img, img_list, upload_flag, replace_flag):
|
| 476 |
+
if len(user_message) == 0:
|
| 477 |
+
text_box_show = 'Input should not be empty!'
|
| 478 |
+
else:
|
| 479 |
+
text_box_show = ''
|
| 480 |
+
|
| 481 |
+
if isinstance(gr_img, dict):
|
| 482 |
+
gr_img, mask = gr_img['image'], gr_img['mask']
|
| 483 |
+
else:
|
| 484 |
+
mask = None
|
| 485 |
+
|
| 486 |
+
if '[identify]' in user_message:
|
| 487 |
+
# check if user provide bbox in the text input
|
| 488 |
+
integers = re.findall(r'-?\d+', user_message)
|
| 489 |
+
if len(integers) != 4: # no bbox in text
|
| 490 |
+
bbox = mask2bbox(mask)
|
| 491 |
+
user_message = user_message + bbox
|
| 492 |
+
|
| 493 |
+
if chat_state is None:
|
| 494 |
+
chat_state = CONV_VISION.copy()
|
| 495 |
+
|
| 496 |
+
if upload_flag:
|
| 497 |
+
if replace_flag:
|
| 498 |
+
chat_state = CONV_VISION.copy() # new image, reset everything
|
| 499 |
+
replace_flag = 0
|
| 500 |
+
chatbot = []
|
| 501 |
+
img_list = []
|
| 502 |
+
llm_message = chat.upload_img(gr_img, chat_state, img_list)
|
| 503 |
+
upload_flag = 0
|
| 504 |
+
|
| 505 |
+
chat.ask(user_message, chat_state)
|
| 506 |
+
|
| 507 |
+
chatbot = chatbot + [[user_message, None]]
|
| 508 |
+
|
| 509 |
+
if '[identify]' in user_message:
|
| 510 |
+
visual_img, _ = visualize_all_bbox_together(gr_img, user_message)
|
| 511 |
+
if visual_img is not None:
|
| 512 |
+
file_path = save_tmp_img(visual_img)
|
| 513 |
+
chatbot = chatbot + [[(file_path,), None]]
|
| 514 |
+
|
| 515 |
+
return text_box_show, chatbot, chat_state, img_list, upload_flag, replace_flag
|
| 516 |
+
|
| 517 |
+
|
| 518 |
+
# def gradio_answer(chatbot, chat_state, img_list, temperature):
|
| 519 |
+
# llm_message = chat.answer(conv=chat_state,
|
| 520 |
+
# img_list=img_list,
|
| 521 |
+
# temperature=temperature,
|
| 522 |
+
# max_new_tokens=500,
|
| 523 |
+
# max_length=2000)[0]
|
| 524 |
+
# chatbot[-1][1] = llm_message
|
| 525 |
+
# return chatbot, chat_state
|
| 526 |
+
|
| 527 |
+
|
| 528 |
+
def gradio_stream_answer(chatbot, chat_state, img_list, temperature):
|
| 529 |
+
if len(img_list) > 0:
|
| 530 |
+
if not isinstance(img_list[0], torch.Tensor):
|
| 531 |
+
chat.encode_img(img_list)
|
| 532 |
+
streamer = chat.stream_answer(conv=chat_state,
|
| 533 |
+
img_list=img_list,
|
| 534 |
+
temperature=temperature,
|
| 535 |
+
max_new_tokens=500,
|
| 536 |
+
max_length=2000)
|
| 537 |
+
# chatbot[-1][1] = output
|
| 538 |
+
# chat_state.messages[-1][1] = '</s>'
|
| 539 |
+
|
| 540 |
+
output = ''
|
| 541 |
+
for new_output in streamer:
|
| 542 |
+
# print(new_output)
|
| 543 |
+
output=output+new_output
|
| 544 |
+
print(output)
|
| 545 |
+
# if "{" in output:
|
| 546 |
+
# chatbot[-1][1]="Grounding and referring expression is still under work."
|
| 547 |
+
# else:
|
| 548 |
+
output = escape_markdown(output)
|
| 549 |
+
# output += escapped
|
| 550 |
+
chatbot[-1][1] = output
|
| 551 |
+
yield chatbot, chat_state
|
| 552 |
+
chat_state.messages[-1][1] = '</s>'
|
| 553 |
+
return chatbot, chat_state
|
| 554 |
+
|
| 555 |
+
|
| 556 |
+
def gradio_visualize(chatbot, gr_img):
|
| 557 |
+
if isinstance(gr_img, dict):
|
| 558 |
+
gr_img, mask = gr_img['image'], gr_img['mask']
|
| 559 |
+
|
| 560 |
+
unescaped = reverse_escape(chatbot[-1][1])
|
| 561 |
+
visual_img, generation_color = visualize_all_bbox_together(gr_img, unescaped)
|
| 562 |
+
if visual_img is not None:
|
| 563 |
+
if len(generation_color):
|
| 564 |
+
chatbot[-1][1] = generation_color
|
| 565 |
+
file_path = save_tmp_img(visual_img)
|
| 566 |
+
chatbot = chatbot + [[None, (file_path,)]]
|
| 567 |
+
|
| 568 |
+
return chatbot
|
| 569 |
+
|
| 570 |
+
|
| 571 |
+
def gradio_taskselect(idx):
|
| 572 |
+
prompt_list = [
|
| 573 |
+
'',
|
| 574 |
+
'Classify the image in the following classes: ',
|
| 575 |
+
'[identify] what is this ',
|
| 576 |
+
]
|
| 577 |
+
instruct_list = [
|
| 578 |
+
'**Hint:** Type in whatever you want',
|
| 579 |
+
'**Hint:** Type in the classes you want the model to classify in',
|
| 580 |
+
'**Hint:** Draw a bounding box on the uploaded image then send the command. Click the "clear" botton on the top right of the image before redraw',
|
| 581 |
+
]
|
| 582 |
+
return prompt_list[idx], instruct_list[idx]
|
| 583 |
+
|
| 584 |
+
|
| 585 |
+
|
| 586 |
+
|
| 587 |
+
chat = Chat(model, image_processor,tokenizer, device=device)
|
| 588 |
+
|
| 589 |
+
|
| 590 |
+
title = """<h1 align="center">GeoChat Demo</h1>"""
|
| 591 |
+
description = 'Welcome to Our GeoChat Chatbot Demo!'
|
| 592 |
+
article = """<div style="display: flex;"><p style="display: inline-block;"><a href='https://mbzuai-oryx.github.io/GeoChat'><img src='https://img.shields.io/badge/Project-Page-Green'></a></p><p style="display: inline-block;"><a href='https://arxiv.org/abs/2311.15826'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></p><p style="display: inline-block;"><a href='https://github.com/mbzuai-oryx/GeoChat/tree/main'><img src='https://img.shields.io/badge/GitHub-Repo-blue'></a></p><p style="display: inline-block;"><a href='https://youtu.be/KOKtkkKpNDk?feature=shared'><img src='https://img.shields.io/badge/YouTube-Video-red'></a></p></div>"""
|
| 593 |
+
# article = """<p><a href='https://minigpt-v2.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a></p>"""
|
| 594 |
+
|
| 595 |
+
introduction = '''
|
| 596 |
+
1. Identify: Draw the bounding box on the uploaded image window and CLICK **Send** to generate the bounding box. (CLICK "clear" button before re-drawing next time).
|
| 597 |
+
2. No Tag: Input whatever you want and CLICK **Send** without any tagging
|
| 598 |
+
|
| 599 |
+
You can also simply chat in free form!
|
| 600 |
+
'''
|
| 601 |
+
|
| 602 |
+
|
| 603 |
+
text_input = gr.Textbox(placeholder='Upload your image and chat', interactive=True, show_label=False, container=False,
|
| 604 |
+
scale=12)
|
| 605 |
+
with gr.Blocks() as demo:
|
| 606 |
+
gr.Markdown(title)
|
| 607 |
+
# gr.Markdown(description)
|
| 608 |
+
gr.Markdown(article)
|
| 609 |
+
|
| 610 |
+
with gr.Row():
|
| 611 |
+
with gr.Column(scale=0.5):
|
| 612 |
+
image = gr.Image(type="pil", tool='sketch', brush_radius=20)
|
| 613 |
+
|
| 614 |
+
temperature = gr.Slider(
|
| 615 |
+
minimum=0.1,
|
| 616 |
+
maximum=1.5,
|
| 617 |
+
value=0.6,
|
| 618 |
+
step=0.1,
|
| 619 |
+
interactive=True,
|
| 620 |
+
label="Temperature",
|
| 621 |
+
)
|
| 622 |
+
|
| 623 |
+
clear = gr.Button("Restart")
|
| 624 |
+
|
| 625 |
+
gr.Markdown(introduction)
|
| 626 |
+
|
| 627 |
+
with gr.Column():
|
| 628 |
+
chat_state = gr.State(value=None)
|
| 629 |
+
img_list = gr.State(value=[])
|
| 630 |
+
chatbot = gr.Chatbot(label='GeoChat')
|
| 631 |
+
|
| 632 |
+
dataset = gr.Dataset(
|
| 633 |
+
components=[gr.Textbox(visible=False)],
|
| 634 |
+
samples=[['No Tag'], ['Scene Classification'],['Identify']],
|
| 635 |
+
type="index",
|
| 636 |
+
label='Task Shortcuts',
|
| 637 |
+
)
|
| 638 |
+
task_inst = gr.Markdown('**Hint:** Upload your image and chat')
|
| 639 |
+
with gr.Row():
|
| 640 |
+
text_input.render()
|
| 641 |
+
send = gr.Button("Send", variant='primary', size='sm', scale=1)
|
| 642 |
+
|
| 643 |
+
upload_flag = gr.State(value=0)
|
| 644 |
+
replace_flag = gr.State(value=0)
|
| 645 |
+
image.upload(image_upload_trigger, [upload_flag, replace_flag, img_list], [upload_flag, replace_flag])
|
| 646 |
+
|
| 647 |
+
with gr.Row():
|
| 648 |
+
with gr.Column():
|
| 649 |
+
gr.Examples(examples=[
|
| 650 |
+
["demo_images/train_2956_0001.png", "Where are the airplanes located and what is their type?", upload_flag, replace_flag,
|
| 651 |
+
img_list],
|
| 652 |
+
["demo_images/7292.JPG", "How many buildings are flooded?", upload_flag,
|
| 653 |
+
replace_flag, img_list],
|
| 654 |
+
], inputs=[image, text_input, upload_flag, replace_flag, img_list], fn=example_trigger,
|
| 655 |
+
outputs=[upload_flag, replace_flag])
|
| 656 |
+
with gr.Column():
|
| 657 |
+
gr.Examples(examples=[
|
| 658 |
+
["demo_images/church_183.png", "Classify the image in the following classes: Church, Beach, Dense Residential, Storage Tanks.",
|
| 659 |
+
upload_flag, replace_flag, img_list],
|
| 660 |
+
["demo_images/04444.png", "[identify] what is this {<8><26><22><37>}", upload_flag,
|
| 661 |
+
replace_flag, img_list],
|
| 662 |
+
], inputs=[image, text_input, upload_flag, replace_flag, img_list], fn=example_trigger,
|
| 663 |
+
outputs=[upload_flag, replace_flag])
|
| 664 |
+
|
| 665 |
+
dataset.click(
|
| 666 |
+
gradio_taskselect,
|
| 667 |
+
inputs=[dataset],
|
| 668 |
+
outputs=[text_input, task_inst],
|
| 669 |
+
show_progress="hidden",
|
| 670 |
+
postprocess=False,
|
| 671 |
+
queue=False,
|
| 672 |
+
)
|
| 673 |
+
|
| 674 |
+
text_input.submit(
|
| 675 |
+
gradio_ask,
|
| 676 |
+
[text_input, chatbot, chat_state, image, img_list, upload_flag, replace_flag],
|
| 677 |
+
[text_input, chatbot, chat_state, img_list, upload_flag, replace_flag], queue=False
|
| 678 |
+
).success(
|
| 679 |
+
gradio_stream_answer,
|
| 680 |
+
[chatbot, chat_state, img_list, temperature],
|
| 681 |
+
[chatbot, chat_state]
|
| 682 |
+
).success(
|
| 683 |
+
gradio_visualize,
|
| 684 |
+
[chatbot, image],
|
| 685 |
+
[chatbot],
|
| 686 |
+
queue=False,
|
| 687 |
+
)
|
| 688 |
+
|
| 689 |
+
send.click(
|
| 690 |
+
gradio_ask,
|
| 691 |
+
[text_input, chatbot, chat_state, image, img_list, upload_flag, replace_flag],
|
| 692 |
+
[text_input, chatbot, chat_state, img_list, upload_flag, replace_flag], queue=False
|
| 693 |
+
).success(
|
| 694 |
+
gradio_stream_answer,
|
| 695 |
+
[chatbot, chat_state, img_list, temperature],
|
| 696 |
+
[chatbot, chat_state]
|
| 697 |
+
).success(
|
| 698 |
+
gradio_visualize,
|
| 699 |
+
[chatbot, image],
|
| 700 |
+
[chatbot],
|
| 701 |
+
queue=False,
|
| 702 |
+
)
|
| 703 |
+
|
| 704 |
+
clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, chat_state, img_list], queue=False)
|
| 705 |
+
|
| 706 |
+
demo.launch(share=True, enable_queue=True,server_name='0.0.0.0')
|
pyproject.toml
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[build-system]
|
| 2 |
+
requires = ["setuptools>=61.0"]
|
| 3 |
+
build-backend = "setuptools.build_meta"
|
| 4 |
+
|
| 5 |
+
[project]
|
| 6 |
+
name = "geochat"
|
| 7 |
+
version = "1.1.1"
|
| 8 |
+
description = "Grounded VLM for Remote Sensing"
|
| 9 |
+
readme = "README.md"
|
| 10 |
+
requires-python = ">=3.8"
|
| 11 |
+
classifiers = [
|
| 12 |
+
"Programming Language :: Python :: 3",
|
| 13 |
+
"License :: OSI Approved :: Apache Software License",
|
| 14 |
+
]
|
| 15 |
+
dependencies = [
|
| 16 |
+
"einops", "fastapi", "gradio==3.35.2", "markdown2[all]", "numpy",
|
| 17 |
+
"requests", "sentencepiece", "tokenizers>=0.12.1",
|
| 18 |
+
"torch==2.0.1", "torchvision==0.15.2", "uvicorn", "wandb",
|
| 19 |
+
"shortuuid", "httpx==0.24.0",
|
| 20 |
+
"deepspeed==0.9.5",
|
| 21 |
+
"peft==0.4.0",
|
| 22 |
+
"transformers==4.31.0",
|
| 23 |
+
"accelerate==0.21.0",
|
| 24 |
+
"bitsandbytes==0.41.0",
|
| 25 |
+
"scikit-learn==1.2.2",
|
| 26 |
+
"sentencepiece==0.1.99",
|
| 27 |
+
"einops==0.6.1", "einops-exts==0.0.4", "timm==0.6.13",
|
| 28 |
+
"gradio_client==0.2.9"
|
| 29 |
+
]
|
| 30 |
+
|
| 31 |
+
[project.urls]
|
| 32 |
+
"Homepage" = "https://github.com/mbzuai-oryx/GeoChat"
|
| 33 |
+
"Bug Tracker" = "https://github.com/mbzuai-oryx/GeoChat/issues"
|
| 34 |
+
|
| 35 |
+
[tool.setuptools.packages.find]
|
| 36 |
+
exclude = ["assets*", "benchmark*", "docs", "dist*", "playground*", "scripts*", "tests*"]
|
| 37 |
+
|
| 38 |
+
[tool.wheel]
|
| 39 |
+
exclude = ["assets*", "benchmark*", "docs", "dist*", "playground*", "scripts*", "tests*"]
|