Spaces:
Sleeping
Sleeping
Commit
·
54d948e
1
Parent(s):
83c4f3c
Add changes for CI complicance
Browse files- .gitignore +10 -1
- src/generate_emr_csv.py +23 -14
- src/triage_dataset.py +17 -4
- tests/test_generate_emr_csv.py +85 -58
- tests/test_multimodal_model.py +57 -31
- tests/test_triage_dataset.py +21 -8
- tools/generate_dummy_images.py +29 -0
.gitignore
CHANGED
|
@@ -24,4 +24,13 @@ logs/
|
|
| 24 |
.env
|
| 25 |
|
| 26 |
# logs
|
| 27 |
-
*.log
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
.env
|
| 25 |
|
| 26 |
# logs
|
| 27 |
+
*.log
|
| 28 |
+
|
| 29 |
+
# --- EXCEPTIONS (ALLOW) ---
|
| 30 |
+
!data/dummy_images/
|
| 31 |
+
!data/dummy_images/*.jpg
|
| 32 |
+
!data/dummy_images/*.jpeg
|
| 33 |
+
!data/dummy_images/*.png
|
| 34 |
+
|
| 35 |
+
# Allow test CSV for CI
|
| 36 |
+
!data/test_emr_records.csv
|
src/generate_emr_csv.py
CHANGED
|
@@ -1,23 +1,22 @@
|
|
|
|
|
| 1 |
import random
|
| 2 |
import csv
|
| 3 |
import string
|
| 4 |
from pathlib import Path
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
# Paths
|
| 7 |
CURRENT_DIR = Path(__file__).resolve().parent
|
| 8 |
-
IMAGES_DIR = CURRENT_DIR.parent / "data" / "images"
|
| 9 |
OUTPUT_FILE = CURRENT_DIR.parent / "data" / "emr_records.csv"
|
| 10 |
|
| 11 |
# Label to triage
|
| 12 |
triage_map = {"COVID": "high", "NORMAL": "low", "VIRAL PNEUMONIA": "medium"}
|
| 13 |
-
SAMPLES_PER_CLASS = 300
|
| 14 |
-
|
| 15 |
-
# Folders
|
| 16 |
-
categories = {
|
| 17 |
-
"COVID": IMAGES_DIR / "COVID",
|
| 18 |
-
"NORMAL": IMAGES_DIR / "NORMAL",
|
| 19 |
-
"VIRAL PNEUMONIA": IMAGES_DIR / "VIRAL PNEUMONIA",
|
| 20 |
-
}
|
| 21 |
|
| 22 |
# Shared ambiguous templates
|
| 23 |
shared_symptoms = [
|
|
@@ -120,7 +119,17 @@ def build_emr(label, i):
|
|
| 120 |
|
| 121 |
|
| 122 |
# Generate records
|
| 123 |
-
def generate_dataset():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
records = []
|
| 125 |
for label, img_dir in categories.items():
|
| 126 |
image_files = sorted(
|
|
@@ -136,7 +145,7 @@ def generate_dataset():
|
|
| 136 |
|
| 137 |
for i in range(SAMPLES_PER_CLASS):
|
| 138 |
image_path = str(
|
| 139 |
-
random.choice(image_files).relative_to(
|
| 140 |
)
|
| 141 |
text = build_emr(label, i)
|
| 142 |
triage = triage_map[label]
|
|
@@ -144,13 +153,13 @@ def generate_dataset():
|
|
| 144 |
|
| 145 |
# Shuffle + write
|
| 146 |
random.shuffle(records)
|
| 147 |
-
with open(
|
| 148 |
writer = csv.writer(f)
|
| 149 |
writer.writerow(["patient_id", "image_path", "emr_text", "triage_level"])
|
| 150 |
writer.writerows(records)
|
| 151 |
|
| 152 |
-
print(f"✅
|
| 153 |
|
| 154 |
|
| 155 |
if __name__ == "__main__":
|
| 156 |
-
generate_dataset()
|
|
|
|
| 1 |
+
import os
|
| 2 |
import random
|
| 3 |
import csv
|
| 4 |
import string
|
| 5 |
from pathlib import Path
|
| 6 |
|
| 7 |
+
# Detect CI environment
|
| 8 |
+
IS_CI = os.getenv("CI", "false").lower() == "true"
|
| 9 |
+
|
| 10 |
+
# Set number of samples accordingly
|
| 11 |
+
SAMPLES_PER_CLASS = 3 if IS_CI else 300 # Reduced for CI to speed up tests
|
| 12 |
+
|
| 13 |
# Paths
|
| 14 |
CURRENT_DIR = Path(__file__).resolve().parent
|
| 15 |
+
IMAGES_DIR = CURRENT_DIR.parent / "data" / "images" # Absolute path of images folder
|
| 16 |
OUTPUT_FILE = CURRENT_DIR.parent / "data" / "emr_records.csv"
|
| 17 |
|
| 18 |
# Label to triage
|
| 19 |
triage_map = {"COVID": "high", "NORMAL": "low", "VIRAL PNEUMONIA": "medium"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
# Shared ambiguous templates
|
| 22 |
shared_symptoms = [
|
|
|
|
| 119 |
|
| 120 |
|
| 121 |
# Generate records
|
| 122 |
+
def generate_dataset(image_dir_override=None, output_path_override=None):
|
| 123 |
+
root_image_dir = image_dir_override or IMAGES_DIR
|
| 124 |
+
output_file = output_path_override or OUTPUT_FILE
|
| 125 |
+
|
| 126 |
+
# Folders
|
| 127 |
+
categories = {
|
| 128 |
+
"COVID": root_image_dir / "COVID", # Absolute path of Image labels
|
| 129 |
+
"NORMAL": root_image_dir / "NORMAL",
|
| 130 |
+
"VIRAL PNEUMONIA": root_image_dir / "VIRAL PNEUMONIA",
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
records = []
|
| 134 |
for label, img_dir in categories.items():
|
| 135 |
image_files = sorted(
|
|
|
|
| 145 |
|
| 146 |
for i in range(SAMPLES_PER_CLASS):
|
| 147 |
image_path = str(
|
| 148 |
+
random.choice(image_files).relative_to(root_image_dir.parent.parent) # path of image respective to the project root
|
| 149 |
)
|
| 150 |
text = build_emr(label, i)
|
| 151 |
triage = triage_map[label]
|
|
|
|
| 153 |
|
| 154 |
# Shuffle + write
|
| 155 |
random.shuffle(records)
|
| 156 |
+
with open(output_file, "w", newline="") as f:
|
| 157 |
writer = csv.writer(f)
|
| 158 |
writer.writerow(["patient_id", "image_path", "emr_text", "triage_level"])
|
| 159 |
writer.writerows(records)
|
| 160 |
|
| 161 |
+
print(f"✅ EMR dataset generated at {output_file}")
|
| 162 |
|
| 163 |
|
| 164 |
if __name__ == "__main__":
|
| 165 |
+
generate_dataset(image_dir_override=IMAGES_DIR, output_path_override=OUTPUT_FILE)
|
src/triage_dataset.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import os
|
| 2 |
import torch
|
|
|
|
| 3 |
from torch.utils.data import Dataset
|
| 4 |
from PIL import Image
|
| 5 |
from torchvision import transforms
|
|
@@ -7,6 +8,9 @@ from torchvision.transforms import InterpolationMode
|
|
| 7 |
import pandas as pd
|
| 8 |
from transformers import AutoTokenizer
|
| 9 |
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
class TriageDataset(Dataset):
|
| 12 |
def __init__(
|
|
@@ -16,6 +20,7 @@ class TriageDataset(Dataset):
|
|
| 16 |
max_length=128,
|
| 17 |
transform=None,
|
| 18 |
mode="multimodal",
|
|
|
|
| 19 |
):
|
| 20 |
assert mode in [
|
| 21 |
"text",
|
|
@@ -27,6 +32,10 @@ class TriageDataset(Dataset):
|
|
| 27 |
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
| 28 |
self.max_length = max_length
|
| 29 |
self.mode = mode.lower()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
self.transform = (
|
| 32 |
transform
|
|
@@ -78,11 +87,15 @@ class TriageDataset(Dataset):
|
|
| 78 |
|
| 79 |
if self.mode in ["image", "multimodal"]:
|
| 80 |
# Process image
|
| 81 |
-
|
| 82 |
-
|
|
|
|
| 83 |
|
| 84 |
-
if not
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
| 86 |
image = Image.open(image_path).convert("RGB")
|
| 87 |
output["image"] = self.transform(image)
|
| 88 |
|
|
|
|
| 1 |
import os
|
| 2 |
import torch
|
| 3 |
+
from pathlib import Path
|
| 4 |
from torch.utils.data import Dataset
|
| 5 |
from PIL import Image
|
| 6 |
from torchvision import transforms
|
|
|
|
| 8 |
import pandas as pd
|
| 9 |
from transformers import AutoTokenizer
|
| 10 |
|
| 11 |
+
# Check if running in CI environment
|
| 12 |
+
IS_CI = os.getenv("CI", "false").lower() == "true"
|
| 13 |
+
|
| 14 |
|
| 15 |
class TriageDataset(Dataset):
|
| 16 |
def __init__(
|
|
|
|
| 20 |
max_length=128,
|
| 21 |
transform=None,
|
| 22 |
mode="multimodal",
|
| 23 |
+
image_base_dir=None,
|
| 24 |
):
|
| 25 |
assert mode in [
|
| 26 |
"text",
|
|
|
|
| 32 |
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
| 33 |
self.max_length = max_length
|
| 34 |
self.mode = mode.lower()
|
| 35 |
+
if self.mode in ["image", "multimodal"]:
|
| 36 |
+
if image_base_dir is None:
|
| 37 |
+
raise ValueError("image directory must be provided for image or multimodal mode.")
|
| 38 |
+
self.image_base_dir = Path(image_base_dir).resolve()
|
| 39 |
|
| 40 |
self.transform = (
|
| 41 |
transform
|
|
|
|
| 87 |
|
| 88 |
if self.mode in ["image", "multimodal"]:
|
| 89 |
# Process image
|
| 90 |
+
image_path = Path(row["image_path"])
|
| 91 |
+
if not image_path.is_absolute():
|
| 92 |
+
image_path = self.image_base_dir / image_path
|
| 93 |
|
| 94 |
+
if not image_path.exists():
|
| 95 |
+
if IS_CI:
|
| 96 |
+
raise FileNotFoundError(f"[CI] Image file not found: {image_path}")
|
| 97 |
+
else:
|
| 98 |
+
raise FileNotFoundError(f"[LOCAL] Image file not found: {image_path}")
|
| 99 |
image = Image.open(image_path).convert("RGB")
|
| 100 |
output["image"] = self.transform(image)
|
| 101 |
|
tests/test_generate_emr_csv.py
CHANGED
|
@@ -1,22 +1,30 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
import csv
|
| 3 |
import sys
|
| 4 |
import pytest
|
| 5 |
from pathlib import Path
|
| 6 |
-
from collections import Counter
|
| 7 |
|
| 8 |
-
# Add
|
| 9 |
-
BASE_DIR =
|
| 10 |
-
|
| 11 |
-
|
| 12 |
|
| 13 |
-
from
|
| 14 |
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
EXPECTED_COLUMNS = ["patient_id", "image_path", "emr_text", "triage_level"]
|
| 19 |
-
|
|
|
|
| 20 |
|
| 21 |
AMBIGUOUS_PHRASES = [
|
| 22 |
"Symptoms could relate to a range of viral infections.",
|
|
@@ -46,54 +54,67 @@ NOISE_SENTENCES = [
|
|
| 46 |
]
|
| 47 |
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
lines = f.readlines()
|
| 54 |
-
assert len(lines) > 1 # Header + Content
|
| 55 |
|
| 56 |
|
| 57 |
-
|
| 58 |
-
def load_emr_csv():
|
| 59 |
assert CSV_PATH.exists(), f"CSV file not found at: {CSV_PATH}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
with open(CSV_PATH, newline="") as f:
|
| 61 |
reader = csv.DictReader(f)
|
| 62 |
rows = list(reader)
|
| 63 |
-
return rows
|
| 64 |
-
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
assert set(row.keys()) == set(EXPECTED_COLUMNS), "CSV columns mismatch"
|
| 69 |
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
|
| 72 |
-
assert len(load_emr_csv) == 900, "Total records should be 900"
|
| 73 |
-
counts = Counter(row["triage_level"] for row in load_emr_csv)
|
| 74 |
-
for cls in EXPECTED_CLASSES:
|
| 75 |
-
assert counts[cls] == EXPECTED_SAMPLES_PER_CLASS, f"{cls} count mismatch"
|
| 76 |
|
| 77 |
|
| 78 |
def test_patient_id_format_and_uniqueness(load_emr_csv):
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
|
| 84 |
-
def test_emr_text_quality(
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
| 91 |
|
| 92 |
|
| 93 |
-
def test_image_path_format(
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
|
| 99 |
def test_ambiguous_and_noise_injection(load_emr_csv):
|
|
@@ -101,28 +122,34 @@ def test_ambiguous_and_noise_injection(load_emr_csv):
|
|
| 101 |
symptom_hits = 0
|
| 102 |
noise_hits = 0
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
| 112 |
|
| 113 |
assert ambiguous_hits > 800, "Ambiguous phrases missing in too many EMRs"
|
| 114 |
assert symptom_hits > 800, "Shared symptom clues underrepresented"
|
| 115 |
assert noise_hits > 700, "Too few EMRs contain noise sentences"
|
| 116 |
|
| 117 |
|
| 118 |
-
def test_label_validity(
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
|
|
|
|
|
|
| 123 |
|
| 124 |
|
| 125 |
-
def test_no_empty_fields(
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import re
|
| 3 |
import csv
|
| 4 |
import sys
|
| 5 |
import pytest
|
| 6 |
from pathlib import Path
|
|
|
|
| 7 |
|
| 8 |
+
# Add src/ to path so we can import from it
|
| 9 |
+
BASE_DIR = Path(__file__).resolve().parent.parent
|
| 10 |
+
SRC_DIR = BASE_DIR / "src"
|
| 11 |
+
sys.path.insert(0, str(SRC_DIR))
|
| 12 |
|
| 13 |
+
from generate_emr_csv import generate_dataset, OUTPUT_FILE
|
| 14 |
|
| 15 |
+
# Determine if running in CI
|
| 16 |
+
IS_CI = os.getenv("CI", "false").lower() == "true"
|
| 17 |
|
| 18 |
+
# Paths
|
| 19 |
+
DATA_DIR = BASE_DIR / "data"
|
| 20 |
+
DUMMY_IMAGES_DIR = DATA_DIR / "dummy_images"
|
| 21 |
+
REAL_IMAGES_DIR = DATA_DIR / "images"
|
| 22 |
+
CSV_PATH = DATA_DIR / ("test_emr_records.csv" if IS_CI else OUTPUT_FILE)
|
| 23 |
+
|
| 24 |
+
# Constants
|
| 25 |
EXPECTED_COLUMNS = ["patient_id", "image_path", "emr_text", "triage_level"]
|
| 26 |
+
EXPECTED_CLASSES = ["low", "medium", "high"]
|
| 27 |
+
EXPECTED_SAMPLES_PER_CLASS = 3 if IS_CI else 300
|
| 28 |
|
| 29 |
AMBIGUOUS_PHRASES = [
|
| 30 |
"Symptoms could relate to a range of viral infections.",
|
|
|
|
| 54 |
]
|
| 55 |
|
| 56 |
|
| 57 |
+
@pytest.fixture(scope="module", autouse=True)
|
| 58 |
+
def generate_csv_for_test():
|
| 59 |
+
image_dir = DUMMY_IMAGES_DIR if IS_CI else REAL_IMAGES_DIR
|
| 60 |
+
generate_dataset(image_dir_override=image_dir, output_path_override=CSV_PATH)
|
|
|
|
|
|
|
| 61 |
|
| 62 |
|
| 63 |
+
def test_csv_exists():
|
|
|
|
| 64 |
assert CSV_PATH.exists(), f"CSV file not found at: {CSV_PATH}"
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def test_csv_structure():
|
| 68 |
+
with open(CSV_PATH, newline="") as f:
|
| 69 |
+
reader = csv.reader(f)
|
| 70 |
+
header = next(reader)
|
| 71 |
+
assert set(header) == set(EXPECTED_COLUMNS), "CSV columns mismatch"
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def test_total_and_per_class_counts():
|
| 75 |
with open(CSV_PATH, newline="") as f:
|
| 76 |
reader = csv.DictReader(f)
|
| 77 |
rows = list(reader)
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
expected_total = EXPECTED_SAMPLES_PER_CLASS * len(EXPECTED_CLASSES)
|
| 80 |
+
assert len(rows) == expected_total
|
|
|
|
| 81 |
|
| 82 |
+
counts = {"low": 0, "medium": 0, "high": 0}
|
| 83 |
+
for row in rows:
|
| 84 |
+
counts[row["triage_level"]] += 1
|
| 85 |
|
| 86 |
+
assert all(c == EXPECTED_SAMPLES_PER_CLASS for c in counts.values)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
|
| 89 |
def test_patient_id_format_and_uniqueness(load_emr_csv):
|
| 90 |
+
with open(CSV_PATH, newline="") as f:
|
| 91 |
+
reader = csv.DictReader(f)
|
| 92 |
+
ids = [row["patient_id"] for row in reader]
|
| 93 |
+
assert len(ids) == len(set(ids)), "Duplicate patient IDs found"
|
| 94 |
+
pattern = re.compile(r"^ID-[A-Z]{2}\d{2}$")
|
| 95 |
+
for pid in ids:
|
| 96 |
+
assert pattern.match(pid), f"Invalid patient ID format: {pid}"
|
| 97 |
|
| 98 |
|
| 99 |
+
def test_emr_text_quality():
|
| 100 |
+
with open(CSV_PATH, newline="") as f:
|
| 101 |
+
reader = csv.DictReader(f)
|
| 102 |
+
for row in reader:
|
| 103 |
+
text = row["emr_text"]
|
| 104 |
+
assert (
|
| 105 |
+
isinstance(text, str) and len(text.split()) > 10
|
| 106 |
+
), "EMR text too short or malformed"
|
| 107 |
+
assert "Temperature" in text and "SPO2" in text, "Vitals info missing"
|
| 108 |
|
| 109 |
|
| 110 |
+
def test_image_path_format():
|
| 111 |
+
expected_path = DUMMY_IMAGES_DIR.relative_to(BASE_DIR) if IS_CI else REAL_IMAGES_DIR.relative_to(BASE_DIR)
|
| 112 |
+
with open(CSV_PATH, newline="") as f:
|
| 113 |
+
reader = csv.DictReader(f)
|
| 114 |
+
for row in reader:
|
| 115 |
+
path = row["image_path"]
|
| 116 |
+
assert path.startswith(expected_path), f"Image path should start with '{expected_path}', got: {path}"
|
| 117 |
+
assert path.endswith((".jpg", ".jpeg", ".png")), f"Invalid image path: {path}"
|
| 118 |
|
| 119 |
|
| 120 |
def test_ambiguous_and_noise_injection(load_emr_csv):
|
|
|
|
| 122 |
symptom_hits = 0
|
| 123 |
noise_hits = 0
|
| 124 |
|
| 125 |
+
with open(CSV_PATH, newline="") as f:
|
| 126 |
+
reader = csv.DictReader(f)
|
| 127 |
+
for row in reader:
|
| 128 |
+
text = row["emr_text"]
|
| 129 |
+
if any(phrase in text for phrase in AMBIGUOUS_PHRASES):
|
| 130 |
+
ambiguous_hits += 1
|
| 131 |
+
if any(symptom in text for symptom in SHARED_SYMPTOMS):
|
| 132 |
+
symptom_hits += 1
|
| 133 |
+
if any(noise in text for noise in NOISE_SENTENCES):
|
| 134 |
+
noise_hits += 1
|
| 135 |
|
| 136 |
assert ambiguous_hits > 800, "Ambiguous phrases missing in too many EMRs"
|
| 137 |
assert symptom_hits > 800, "Shared symptom clues underrepresented"
|
| 138 |
assert noise_hits > 700, "Too few EMRs contain noise sentences"
|
| 139 |
|
| 140 |
|
| 141 |
+
def test_label_validity():
|
| 142 |
+
with open(CSV_PATH, newline="") as f:
|
| 143 |
+
reader = csv.DictReader(f)
|
| 144 |
+
for row in reader:
|
| 145 |
+
assert (
|
| 146 |
+
row["triage_level"] in EXPECTED_CLASSES
|
| 147 |
+
), f"Invalid label: {row['triage_level']}"
|
| 148 |
|
| 149 |
|
| 150 |
+
def test_no_empty_fields():
|
| 151 |
+
with open(CSV_PATH, newline="") as f:
|
| 152 |
+
reader = csv.DictReader(f)
|
| 153 |
+
for row in reader:
|
| 154 |
+
for key, val in row.items():
|
| 155 |
+
assert val.strip() != "", f"Empty field found for {key}"
|
tests/test_multimodal_model.py
CHANGED
|
@@ -1,12 +1,12 @@
|
|
| 1 |
import sys
|
| 2 |
-
import os
|
| 3 |
import torch
|
| 4 |
import pytest
|
| 5 |
-
from
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
-
# Add repo root to
|
| 9 |
-
BASE_DIR =
|
| 10 |
if BASE_DIR not in sys.path:
|
| 11 |
sys.path.append(BASE_DIR)
|
| 12 |
|
|
@@ -15,57 +15,83 @@ from src.multimodal_model import MediLLMModel
|
|
| 15 |
BATCH_SIZE = 2
|
| 16 |
SEQ_LEN = 128
|
| 17 |
IMAGE_SIZE = (3, 224, 224)
|
| 18 |
-
TEXT_MODEL_NAME = "emilyalsentzer/Bio_ClinicalBERT"
|
| 19 |
-
|
| 20 |
-
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_NAME)
|
| 21 |
|
| 22 |
|
| 23 |
@pytest.fixture
|
| 24 |
def dummy_inputs():
|
| 25 |
-
text_batch = ["Patient reports mild cough and fever."] * BATCH_SIZE
|
| 26 |
-
encoding = tokenizer(
|
| 27 |
-
text_batch,
|
| 28 |
-
padding="max_length",
|
| 29 |
-
truncation=True,
|
| 30 |
-
max_length=SEQ_LEN,
|
| 31 |
-
return_tensors="pt",
|
| 32 |
-
)
|
| 33 |
return {
|
| 34 |
-
"input_ids":
|
| 35 |
-
"attention_mask":
|
| 36 |
"image": torch.randn(BATCH_SIZE, *IMAGE_SIZE),
|
| 37 |
}
|
| 38 |
|
| 39 |
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
model = MediLLMModel(mode="text")
|
| 42 |
model.eval()
|
| 43 |
outputs = model(
|
| 44 |
input_ids=dummy_inputs["input_ids"],
|
| 45 |
-
attention_mask=dummy_inputs["attention_mask"]
|
| 46 |
)
|
| 47 |
-
assert outputs.shape == (BATCH_SIZE, 3), "Incorrect output shape for text-only mode"
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
def test_image_only(dummy_inputs):
|
| 51 |
model = MediLLMModel(mode="image")
|
| 52 |
model.eval()
|
| 53 |
outputs = model(image=dummy_inputs["image"])
|
| 54 |
-
assert outputs.shape == (
|
| 55 |
-
BATCH_SIZE,
|
| 56 |
-
3,
|
| 57 |
-
), "Incorrect output shape for image-only mode"
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
-
def test_multimodal(dummy_inputs):
|
| 61 |
model = MediLLMModel(mode="multimodal")
|
| 62 |
model.eval()
|
| 63 |
outputs = model(
|
| 64 |
input_ids=dummy_inputs["input_ids"],
|
| 65 |
-
|
| 66 |
image=dummy_inputs["image"],
|
| 67 |
)
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
),
|
|
|
|
| 1 |
import sys
|
|
|
|
| 2 |
import torch
|
| 3 |
import pytest
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from unittest.mock import patch, MagicMock
|
| 6 |
|
| 7 |
|
| 8 |
+
# Add repo root to sys.path
|
| 9 |
+
BASE_DIR = Path(__file__).resolve().parent.parent
|
| 10 |
if BASE_DIR not in sys.path:
|
| 11 |
sys.path.append(BASE_DIR)
|
| 12 |
|
|
|
|
| 15 |
BATCH_SIZE = 2
|
| 16 |
SEQ_LEN = 128
|
| 17 |
IMAGE_SIZE = (3, 224, 224)
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
@pytest.fixture
|
| 21 |
def dummy_inputs():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
return {
|
| 23 |
+
"input_ids": torch.randint(0, 30522, (BATCH_SIZE, SEQ_LEN)), # dummy token IDs
|
| 24 |
+
"attention_mask": torch.ones(BATCH_SIZE, SEQ_LEN),
|
| 25 |
"image": torch.randn(BATCH_SIZE, *IMAGE_SIZE),
|
| 26 |
}
|
| 27 |
|
| 28 |
|
| 29 |
+
@patch("src.multimodal_model.AutoModel.from_pretrained")
|
| 30 |
+
@patch("src.multimodal_model.timm.create_model")
|
| 31 |
+
def test_text_only(mock_create_model, mock_auto_model, dummy_inputs):
|
| 32 |
+
# Mock text encoder
|
| 33 |
+
mock_text_encoder = MagicMock()
|
| 34 |
+
mock_text_encoder.config.hidden_size = 768
|
| 35 |
+
mock_text_encoder.return_value = MagicMock(
|
| 36 |
+
last_hidden_state=torch.randn(BATCH_SIZE, SEQ_LEN, 768)
|
| 37 |
+
)
|
| 38 |
+
mock_auto_model.return_value = mock_text_encoder
|
| 39 |
+
|
| 40 |
model = MediLLMModel(mode="text")
|
| 41 |
model.eval()
|
| 42 |
outputs = model(
|
| 43 |
input_ids=dummy_inputs["input_ids"],
|
| 44 |
+
attention_mask=dummy_inputs["attention_mask"]
|
| 45 |
)
|
|
|
|
| 46 |
|
| 47 |
+
assert outputs.shape == (BATCH_SIZE, 3)
|
| 48 |
+
probs = torch.softmax(outputs, dim=1)
|
| 49 |
+
assert torch.allclose(probs.sum(dim=1), torch.ones(BATCH_SIZE), atol=1e-5)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
@patch("src.multimodal_model.Automodel.from_pretrained")
|
| 53 |
+
@patch("src.multimodal_model.timm.create_model")
|
| 54 |
+
def test_image_only(mock_create_model, mock_auto_model, dummy_inputs):
|
| 55 |
+
# Mock image encoder
|
| 56 |
+
mock_image_encoder = MagicMock()
|
| 57 |
+
mock_image_encoder.num_features = 2048
|
| 58 |
+
mock_image_encoder.return_value = torch.randn(BATCH_SIZE, 2048)
|
| 59 |
+
mock_create_model.return_value = mock_image_encoder
|
| 60 |
|
|
|
|
| 61 |
model = MediLLMModel(mode="image")
|
| 62 |
model.eval()
|
| 63 |
outputs = model(image=dummy_inputs["image"])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
assert outputs.shape == (BATCH_SIZE, 3)
|
| 66 |
+
probs = torch.softmax(outputs, dim=1)
|
| 67 |
+
assert torch.allclose(probs.sum(dim=1), torch.ones(BATCH_SIZE), atol=1e-5)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
@patch("src.multimodal_model.AutoModel.from_pretrained")
|
| 71 |
+
@patch("src.multimodal_model.timm.create_model")
|
| 72 |
+
def test_multimodal(mock_create_model, mock_auto_model, dummy_inputs):
|
| 73 |
+
# Mock text encoder
|
| 74 |
+
mock_text_encoder = MagicMock()
|
| 75 |
+
mock_text_encoder.config.hidden_size = 768
|
| 76 |
+
mock_text_encoder.return_value = MagicMock(
|
| 77 |
+
last_hidden_state=torch.randn(BATCH_SIZE, SEQ_LEN, 768)
|
| 78 |
+
)
|
| 79 |
+
mock_auto_model.return_value = mock_text_encoder
|
| 80 |
+
|
| 81 |
+
# Mock image encoder
|
| 82 |
+
mock_image_encoder = MagicMock()
|
| 83 |
+
mock_image_encoder.num_features = 2048
|
| 84 |
+
mock_image_encoder.return_value = torch.randn(BATCH_SIZE, 2048)
|
| 85 |
+
mock_create_model.return_value = mock_image_encoder
|
| 86 |
|
|
|
|
| 87 |
model = MediLLMModel(mode="multimodal")
|
| 88 |
model.eval()
|
| 89 |
outputs = model(
|
| 90 |
input_ids=dummy_inputs["input_ids"],
|
| 91 |
+
atttention_mask=dummy_inputs["attention_mask"],
|
| 92 |
image=dummy_inputs["image"],
|
| 93 |
)
|
| 94 |
+
|
| 95 |
+
assert outputs.shape == (BATCH_SIZE, 3)
|
| 96 |
+
probs = torch.softmax(outputs, dim=1)
|
| 97 |
+
assert torch.allclose(probs.sum(dim=1), torch.ones(BATCH_SIZE), atol=1e-5)
|
tests/test_triage_dataset.py
CHANGED
|
@@ -3,23 +3,36 @@ import sys
|
|
| 3 |
import pytest
|
| 4 |
import torch
|
| 5 |
import pandas as pd
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
| 10 |
|
| 11 |
-
from
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
|
| 17 |
@pytest.mark.parametrize("mode", ["text", "image", "multimodal"])
|
| 18 |
def test_dataset_loading(mode):
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
# Check dataset length
|
| 22 |
-
assert len(dataset) ==
|
| 23 |
|
| 24 |
# Check one sample
|
| 25 |
sample = dataset[0]
|
|
|
|
| 3 |
import pytest
|
| 4 |
import torch
|
| 5 |
import pandas as pd
|
| 6 |
+
from pathlib import Path
|
| 7 |
|
| 8 |
+
# Setup path to src/
|
| 9 |
+
BASE_DIR = Path(__file__).resolve().parent.parent
|
| 10 |
+
SRC_DIR = BASE_DIR / "src"
|
| 11 |
+
sys.path.insert(0, str(SRC_DIR))
|
| 12 |
|
| 13 |
+
from triage_dataset import TriageDataset
|
| 14 |
|
| 15 |
+
# Detect CI environment
|
| 16 |
+
IS_CI = os.getenv("CI", "false").lower() == "true"
|
| 17 |
+
|
| 18 |
+
# Paths
|
| 19 |
+
DATA_DIR = BASE_DIR / "data"
|
| 20 |
+
CSV_PATH = DATA_DIR / ("test_emr_records.csv" if IS_CI else "emr_records.csv")
|
| 21 |
+
IMAGE_DIR = DATA_DIR / ("dummy_images" if IS_CI else "images")
|
| 22 |
+
EXPECTED_SAMPLES_PER_CLASS = 3 if IS_CI else 300
|
| 23 |
+
EXPECTED_TOTAL = 3 * 3 if IS_CI else 300 * 3 # 3 classes
|
| 24 |
|
| 25 |
|
| 26 |
@pytest.mark.parametrize("mode", ["text", "image", "multimodal"])
|
| 27 |
def test_dataset_loading(mode):
|
| 28 |
+
kwargs = {"csv_file": CSV_PATH, "mode": mode}
|
| 29 |
+
if mode in ["image", "multimodal"]:
|
| 30 |
+
kwargs["image_base_dir"] = IMAGE_DIR
|
| 31 |
+
|
| 32 |
+
dataset = TriageDataset(**kwargs)
|
| 33 |
|
| 34 |
# Check dataset length
|
| 35 |
+
assert len(dataset) == EXPECTED_TOTAL, f"Expected {EXPECTED_TOTAL} records in the dataset"
|
| 36 |
|
| 37 |
# Check one sample
|
| 38 |
sample = dataset[0]
|
tools/generate_dummy_images.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
import shutil
|
| 3 |
+
|
| 4 |
+
# Define image categories and paths
|
| 5 |
+
LABELS = ["COVID", "NORMAL", "VIRAL PNEUMONIA"]
|
| 6 |
+
BASE_DIR = Path(__file__).resolve().parent.parent
|
| 7 |
+
DATA_DIR = BASE_DIR / "data" / "images"
|
| 8 |
+
DST_DIR = BASE_DIR / "data" / "dummy_images"
|
| 9 |
+
NUM_IMAGES_PER_CLASS = 3 # keep small for CI
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def create_dummy_images():
|
| 13 |
+
for label in LABELS:
|
| 14 |
+
src_dir = DATA_DIR / label
|
| 15 |
+
dst_dir = DST_DIR / label
|
| 16 |
+
dst_dir.mkdir(parents=True, exist_ok=True)
|
| 17 |
+
|
| 18 |
+
image_files = sorted([f for f in src_dir.glob("*") if f.is_file()])
|
| 19 |
+
for i, img_path in enumerate(image_files[:NUM_IMAGES_PER_CLASS]):
|
| 20 |
+
ext = img_path.suffix
|
| 21 |
+
dummy_filename = f"dummy_{i + 1}{ext}"
|
| 22 |
+
dst_path = dst_dir / dummy_filename
|
| 23 |
+
shutil.copy(img_path, dst_path)
|
| 24 |
+
|
| 25 |
+
print(f"✅ Dummy image copies created in: {DST_DIR}")
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
if __name__ == "__main__":
|
| 29 |
+
create_dummy_images()
|