Spaces:
Sleeping
Sleeping
File size: 13,153 Bytes
af86b36 3ae5670 d4b6438 c8b8d35 fb6c490 c8b8d35 af86b36 4e592d4 c8b8d35 af86b36 fb6c490 c8b8d35 d4b6438 7a0a9dd c8b8d35 4e592d4 c8b8d35 8bafee5 c8b8d35 8bafee5 c8b8d35 af86b36 c8b8d35 af86b36 c8b8d35 af86b36 c8b8d35 8bafee5 c8b8d35 8bafee5 c8b8d35 8bafee5 af86b36 8bafee5 af86b36 8bafee5 af86b36 fb6c490 4e592d4 fb6c490 c8b8d35 af86b36 c8b8d35 da5aec8 8bafee5 af86b36 fb6c490 4e592d4 fb6c490 8bafee5 c8b8d35 3ae5670 af86b36 54b189d 3ae5670 af86b36 3ae5670 af86b36 fb6c490 3ae5670 c8b8d35 af86b36 3ae5670 af86b36 b136189 af86b36 54b189d 3ae5670 54b189d 3ae5670 af86b36 3ae5670 562137e af86b36 fb6c490 3ae5670 af86b36 3ae5670 af86b36 54b189d 3ae5670 54b189d af86b36 3ae5670 af86b36 3ae5670 af86b36 3ae5670 fb6c490 3ae5670 fb6c490 3ae5670 4e592d4 af86b36 4e592d4 fb6c490 3ae5670 562137e 3ae5670 54b189d fb6c490 af86b36 54b189d af86b36 fb6c490 54b189d 3ae5670 af86b36 fb6c490 af86b36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
import torch # PyTorch core utility for model training
import os
import sys
import yaml
import json
import argparse
import matplotlib.pyplot as plt # for plotting
import random
import numpy as np
from tqdm import tqdm # loading bar for loops
from torch.utils.data import (
DataLoader,
Subset,
) # Dataloader to batch and feed data to model,
# random split to split dataset into train and validation sets
from torch.nn import (
CrossEntropyLoss,
) # PyTorch core utility for model training
from torch.optim import Adam # PyTorch core utility for model training,
# Adam is the Optimizer, a gradient descent model
from sklearn.metrics import accuracy_score, f1_score, classification_report # Evaluation metrics
from sklearn.model_selection import StratifiedShuffleSplit
# Setup base path
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Automatically add Project root to python import path
base_dir = os.path.dirname(os.path.dirname(__file__))
if base_dir not in sys.path:
sys.path.append(base_dir)
from src.triage_dataset import TriageDataset # Dataset Class
from src.multimodal_model import MediLLMModel # Mutlimodal Model
def set_seed(seed=42):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def load_config(mode):
config_path = os.path.join(base_dir, "config", "config.yaml")
os.makedirs(os.path.dirname(config_path), exist_ok=True)
# If the config file doesn't exist, create it defaults for all modes
if not os.path.exists(config_path):
default_config = {
"text": {
"lr": 2e-5,
"dropout": 0.3,
"hidden_dim": 256,
"batch_size": 8,
"epochs": 5,
},
"image": {
"lr": 2e-5,
"dropout": 0.3,
"hidden_dim": 256,
"batch_size": 8,
"epochs": 5,
},
"multimodal": {
"lr": 2e-5,
"dropout": 0.3,
"hidden_dim": 256,
"batch_size": 8,
"epochs": 5,
},
}
with open(config_path, "w") as f:
yaml.dump(default_config, f)
# otherwise export to yaml
with open(config_path, "r") as f:
config = yaml.safe_load(f)
if mode not in config:
raise ValueError(f"No config found for mode '{mode}' in config.yaml")
return config[mode]
def stratified_split(dataset, val_ratio=0.2, seed=42):
labels = [dataset.df.iloc[i]["triage_level"] for i in range(len(dataset))]
sss = StratifiedShuffleSplit(
n_splits=1,
test_size=val_ratio,
random_state=seed,
)
tran_idx, val_idx = next(sss.split(range(len(dataset)), labels))
return Subset(dataset, tran_idx), Subset(dataset, val_idx)
# Function to instantiate model and data, train, validate, plot results
# and save the model
def train_model(mode="multimodal", use_wandb=False):
set_seed(42)
if use_wandb:
import wandb
cfg = load_config(mode)
device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu"
) # Use GPU if available or else use CPU
dataset_dir = os.path.join(base_dir, "data", "emr_records.csv")
dataset_kwargs = {"csv_file": dataset_dir, "mode": mode}
if mode in ["image", "multimodal"]:
image_dir = os.path.join(base_dir, "data", "images")
dataset_kwargs["image_base_dir"] = image_dir
dataset = TriageDataset(**dataset_kwargs)
model = MediLLMModel(
dropout=cfg["dropout"], hidden_dim=cfg["hidden_dim"], mode=mode
).to(
device
) # moves the model to selected device
if use_wandb:
# Initialize Weights & Biases
wandb.init(
project="MediLLM_Final_v2",
name=f"train_{mode}",
config=cfg
)
wandb.config.update({"mode": mode})
train_set, val_set = stratified_split(dataset)
batch_size = cfg["batch_size"]
train_loader = DataLoader(
train_set, batch_size=batch_size, shuffle=True
) # Create data in batches to the model
val_loader = DataLoader(val_set, batch_size=batch_size)
# Calculate difference between model prediction and true labels
criterion = CrossEntropyLoss()
optimizer = Adam(
model.parameters(), lr=cfg["lr"]
) # Adaptive learning rate optimizer for fast-converging
# Lists to store accuracy per epoch for plotting
train_acc, val_acc = [], []
train_f1s, val_f1s = [], []
for epoch in range(cfg["epochs"]):
model.train() # Activate training the model, enable dropout
all_preds, all_labels = [], []
for batch in tqdm(
train_loader, desc=f"[{mode}] Epoch {epoch + 1}"
): # Load a batch of text, images, and labels to GPU or CPU
input_ids = batch.get("input_ids", None)
attention_mask = batch.get("attention_mask", None)
images = batch.get("image", None)
labels = batch["label"].to(device)
if input_ids is not None:
input_ids = input_ids.to(device)
if attention_mask is not None:
attention_mask = attention_mask.to(device)
if images is not None:
images = images.to(device)
"""
Each batch looks like this
{
"input_ids": torch.Size([8, 128]),
"attention_mask": torch.Size([8, 128]),
"image": torch.Size([8, 3, 224, 224]),
"label": torch.Size([8])
}
"""
optimizer.zero_grad() # Zero out gradients from previous batch
outputs = model(
input_ids=input_ids,
attention_mask=attention_mask,
image=images,
) # Forward pass through the model
loss = criterion(outputs, labels) # Compute loss value
loss.backward() # Back propagation to compute gradients
optimizer.step() # Adjust the weights using gradients
preds = torch.argmax(outputs, dim=1).cpu().numpy()
# Get the predicted class per sample and convert to CPU & Numpy for
# easier comparison
all_preds.extend(preds)
# Save predictions for metric computation.
# extend() appends each element of preds to the list
all_labels.extend(
labels.cpu().numpy()
) # Save labels for metric computation
# Calculating classification metrics (Accuracy and F1)
acc = accuracy_score(all_labels, all_preds) # Evaluate full-epoch performance
f1 = f1_score(all_labels, all_preds, average="weighted")
# 1) binary: Binary Classification(F1 score of +ve class only)
# 2) macro: Computes F1 for each class independently, then averages,
# treats all classes equally
# 3) micro: Flattens all true and predicted labels and then computes
# global TP, FP, FN and gets F1 from that, works well with
# imbalanced data, equal to accuracy in binary classification and
# different in multi-class/multi-label
# 4) weighted: calculates F1 for each class, then averages them using
# number of samples, avoids bias, real-world and imbalanced classes,
# per-class performance
# 5) samples: used for multi-label classification, computes F1 for each
# instance, then averages across all samples, row-wise,
# not class-wise
train_acc.append(acc) # Append to a list for plotting
train_f1s.append(f1)
print(f"Train Accuracy: {acc:.4f}, F1 Score: {f1:.4f}")
# Validation loop
model.eval() # Deactivates dropnot and batchnorm for inference
val_preds, val_labels = [], []
with torch.no_grad(): # Disables autograd to save memory
for batch in val_loader:
# Load batch of validation data text, images, labels
# to GPU or CPU
input_ids = batch.get("input_ids", None)
attention_mask = batch.get("attention_mask", None)
images = batch.get("image", None)
labels = batch["label"].to(device)
if input_ids is not None:
input_ids = input_ids.to(device)
if attention_mask is not None:
attention_mask = attention_mask.to(device)
if images is not None:
images = images.to(device)
outputs = model(
input_ids=input_ids,
attention_mask=attention_mask,
image=images,
)
preds = torch.argmax(outputs, dim=1).cpu().numpy()
val_preds.extend(preds)
val_labels.extend(labels.cpu().numpy())
val_acc_epoch = accuracy_score(
val_labels, val_preds
) # Validation metrics, accuracy: how many items did your model get
# right out of total items
val_f1 = f1_score(val_labels, val_preds, average="weighted")
# F1 score weights in both precision and recall, uses harmonic mean to
# punish imbalance. If one of the two is low, it drags the accuracy
# score down.
# Precision: How careful is the model when classifying an item
# (TP / (TP + FP)).
# Recall: How many real items did it actually spot
# (TP / (TP + FN)).
val_acc.append(val_acc_epoch)
val_f1s.append(val_f1)
print(f"Val Accuracy: {val_acc_epoch:.4f}, F1 Score: {val_f1:.4f}")
# Log to Weights & Biases
if use_wandb:
wandb.log({
"epoch": epoch + 1,
"train/accuracy": acc,
"train/f1": f1,
"val/accuracy": val_acc_epoch,
"val/f1": val_f1
})
# Save model
model_path = os.path.join(base_dir, f"medi_llm_state_dict_{mode}.pth")
torch.save(
model.state_dict(), model_path
) # Saves only model weights and biases
print(f"💾 Saved model weights and biases to {model_path}")
# Save to Weights & Biases
if use_wandb:
wandb.save(model_path)
# Plot accuracy
plot_path = os.path.join(base_dir, "assets", f"model_training_curve_{mode}.png")
plt.plot(train_acc, label="Train Acc")
plt.plot(val_acc, label="Val Acc")
plt.legend()
plt.title(f"Accuracy: Train vs Validation ({mode})")
plt.savefig(plot_path)
print(f"✅ Saved training curve to {plot_path}")
if use_wandb:
wandb.log({"training_curve": wandb.Image(plot_path)})
# Save training metrics to JSON
results = {
"train_acc": train_acc,
"val_acc": val_acc,
"train_f1": train_f1s,
"val_f1": val_f1s,
"final_train_acc": train_acc[-1],
"final_val_acc": val_acc[-1],
"final_train_f1": train_f1s[-1],
"final_val_f1": val_f1s[-1]
}
results_dir = os.path.join(base_dir, "results")
os.makedirs(results_dir, exist_ok=True)
results_path = os.path.join(results_dir, f"metrics_{mode}.json")
with open(results_path, "w") as f:
json.dump(results, f, indent=2)
print(f"📊 Saved training metrics to {results_path}")
# Classification Report
class_report = classification_report(val_labels, val_preds, output_dict=True, zero_division=0, target_names=["low", "medium", "high"])
print("\n🗓️ Classification Report (Per Class on Validation Set):")
for cls, metrics in class_report.items():
if cls in ["low", "medium", "high"]:
print(f"{cls:>9} -> Precision: {metrics['precision']:.3f}, Recall: {metrics['recall']:.3f}, F1: {metrics['f1-score']:.3f}")
class_report_path = os.path.join(results_dir, f"classification_report_{mode}.json")
with open(class_report_path, "w") as f:
json.dump(class_report, f, indent=2)
print(f"📊 Saved per-class metrics to {class_report_path}")
if use_wandb:
for cls in ["low", "medium", "high"]:
wandb.log({
f"classwise/{cls}_precision": class_report[cls]["precision"],
f"classwise/{cls}_recall": class_report[cls]["recall"],
f"classwise/{cls}_f1": class_report[cls]["f1-score"],
})
wandb.finish()
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--mode", choices=["text", "image", "multimodal"], default="multimodal"
)
parser.add_argument("--wandb", action="store_true", help="Enable Weights & Biases logging")
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
train_model(
mode=args.mode,
use_wandb=args.wandb
) # Only runs if file is run directly not when it is imported
|