Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from typing import Optional, Tuple
|
| 6 |
+
from funasr import AutoModel
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
|
| 9 |
+
os.environ["TORCHDYNAMO_DISABLE"] = "1"
|
| 10 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 11 |
+
if os.environ.get("HF_REPO_ID", "").strip() == "":
|
| 12 |
+
os.environ["HF_REPO_ID"] = "openbmb/VoxCPM-0.5B"
|
| 13 |
+
|
| 14 |
+
import voxcpm
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class VoxCPMDemo:
|
| 18 |
+
def __init__(self) -> None:
|
| 19 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
+
print(f"🚀 Running on device: {self.device}")
|
| 21 |
+
|
| 22 |
+
# ASR model for prompt text recognition
|
| 23 |
+
self.asr_model_id = "iic/SenseVoiceSmall"
|
| 24 |
+
self.asr_model: Optional[AutoModel] = AutoModel(
|
| 25 |
+
model=self.asr_model_id,
|
| 26 |
+
disable_update=True,
|
| 27 |
+
log_level='DEBUG',
|
| 28 |
+
device="cuda:0" if self.device == "cuda" else "cpu",
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
# TTS model (lazy init)
|
| 32 |
+
self.voxcpm_model: Optional[voxcpm.VoxCPM] = None
|
| 33 |
+
self.default_local_model_dir = "./models/VoxCPM-0.5B"
|
| 34 |
+
|
| 35 |
+
# ---------- Model helpers ----------
|
| 36 |
+
def _resolve_model_dir(self) -> str:
|
| 37 |
+
"""
|
| 38 |
+
Resolve model directory:
|
| 39 |
+
1) Use local checkpoint directory if exists
|
| 40 |
+
2) If HF_REPO_ID env is set, download into models/{repo}
|
| 41 |
+
3) Fallback to 'models'
|
| 42 |
+
"""
|
| 43 |
+
if os.path.isdir(self.default_local_model_dir):
|
| 44 |
+
return self.default_local_model_dir
|
| 45 |
+
|
| 46 |
+
repo_id = os.environ.get("HF_REPO_ID", "").strip()
|
| 47 |
+
if len(repo_id) > 0:
|
| 48 |
+
target_dir = os.path.join("models", repo_id.replace("/", "__"))
|
| 49 |
+
if not os.path.isdir(target_dir):
|
| 50 |
+
try:
|
| 51 |
+
from huggingface_hub import snapshot_download # type: ignore
|
| 52 |
+
os.makedirs(target_dir, exist_ok=True)
|
| 53 |
+
print(f"Downloading model from HF repo '{repo_id}' to '{target_dir}' ...")
|
| 54 |
+
snapshot_download(repo_id=repo_id, local_dir=target_dir, local_dir_use_symlinks=False)
|
| 55 |
+
except Exception as e:
|
| 56 |
+
print(f"Warning: HF download failed: {e}. Falling back to 'models'.")
|
| 57 |
+
return "models"
|
| 58 |
+
return target_dir
|
| 59 |
+
return "models"
|
| 60 |
+
|
| 61 |
+
def get_or_load_voxcpm(self) -> voxcpm.VoxCPM:
|
| 62 |
+
if self.voxcpm_model is not None:
|
| 63 |
+
return self.voxcpm_model
|
| 64 |
+
print("Model not loaded, initializing...")
|
| 65 |
+
model_dir = self._resolve_model_dir()
|
| 66 |
+
print(f"Using model dir: {model_dir}")
|
| 67 |
+
self.voxcpm_model = voxcpm.VoxCPM(voxcpm_model_path=model_dir)
|
| 68 |
+
print("Model loaded successfully.")
|
| 69 |
+
return self.voxcpm_model
|
| 70 |
+
|
| 71 |
+
# ---------- Functional endpoints ----------
|
| 72 |
+
def prompt_wav_recognition(self, prompt_wav: Optional[str]) -> str:
|
| 73 |
+
if prompt_wav is None:
|
| 74 |
+
return ""
|
| 75 |
+
res = self.asr_model.generate(input=prompt_wav, language="auto", use_itn=True)
|
| 76 |
+
text = res[0]["text"].split('|>')[-1]
|
| 77 |
+
return text
|
| 78 |
+
|
| 79 |
+
def generate_tts_audio(
|
| 80 |
+
self,
|
| 81 |
+
text_input: str,
|
| 82 |
+
prompt_wav_path_input: Optional[str] = None,
|
| 83 |
+
prompt_text_input: Optional[str] = None,
|
| 84 |
+
cfg_value_input: float = 2.0,
|
| 85 |
+
inference_timesteps_input: int = 10,
|
| 86 |
+
do_normalize: bool = True,
|
| 87 |
+
denoise: bool = True,
|
| 88 |
+
) -> Tuple[int, np.ndarray]:
|
| 89 |
+
"""
|
| 90 |
+
Generate speech from text using VoxCPM; optional reference audio for voice style guidance.
|
| 91 |
+
Returns (sample_rate, waveform_numpy)
|
| 92 |
+
"""
|
| 93 |
+
current_model = self.get_or_load_voxcpm()
|
| 94 |
+
|
| 95 |
+
text = (text_input or "").strip()
|
| 96 |
+
if len(text) == 0:
|
| 97 |
+
raise ValueError("Please input text to synthesize.")
|
| 98 |
+
|
| 99 |
+
prompt_wav_path = prompt_wav_path_input if prompt_wav_path_input else None
|
| 100 |
+
prompt_text = prompt_text_input if prompt_text_input else None
|
| 101 |
+
|
| 102 |
+
print(f"Generating audio for text: '{text[:60]}...'")
|
| 103 |
+
wav = current_model.generate(
|
| 104 |
+
text=text,
|
| 105 |
+
prompt_text=prompt_text,
|
| 106 |
+
prompt_wav_path=prompt_wav_path,
|
| 107 |
+
cfg_value=float(cfg_value_input),
|
| 108 |
+
inference_timesteps=int(inference_timesteps_input),
|
| 109 |
+
normalize=do_normalize,
|
| 110 |
+
denoise=denoise,
|
| 111 |
+
)
|
| 112 |
+
return (16000, wav)
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
# ---------- UI Builders ----------
|
| 116 |
+
|
| 117 |
+
def create_demo_interface(demo: VoxCPMDemo):
|
| 118 |
+
"""Build the Gradio UI for VoxCPM demo."""
|
| 119 |
+
# static assets (logo path)
|
| 120 |
+
gr.set_static_paths(paths=[Path.cwd().absolute() / "assets"])
|
| 121 |
+
|
| 122 |
+
with gr.Blocks(
|
| 123 |
+
theme=gr.themes.Soft(
|
| 124 |
+
primary_hue="blue",
|
| 125 |
+
secondary_hue="gray",
|
| 126 |
+
neutral_hue="slate",
|
| 127 |
+
font=[gr.themes.GoogleFont("Inter"), "Arial", "sans-serif"]
|
| 128 |
+
),
|
| 129 |
+
css="""
|
| 130 |
+
.logo-container {
|
| 131 |
+
text-align: center;
|
| 132 |
+
margin: 0.5rem 0 1rem 0;
|
| 133 |
+
}
|
| 134 |
+
.logo-container img {
|
| 135 |
+
height: 80px;
|
| 136 |
+
width: auto;
|
| 137 |
+
max-width: 200px;
|
| 138 |
+
display: inline-block;
|
| 139 |
+
}
|
| 140 |
+
/* Bold accordion labels */
|
| 141 |
+
#acc_quick details > summary,
|
| 142 |
+
#acc_tips details > summary {
|
| 143 |
+
font-weight: 600 !important;
|
| 144 |
+
font-size: 1.1em !important;
|
| 145 |
+
}
|
| 146 |
+
/* Bold labels for specific checkboxes */
|
| 147 |
+
#chk_denoise label,
|
| 148 |
+
#chk_denoise span,
|
| 149 |
+
#chk_normalize label,
|
| 150 |
+
#chk_normalize span {
|
| 151 |
+
font-weight: 600;
|
| 152 |
+
}
|
| 153 |
+
"""
|
| 154 |
+
) as interface:
|
| 155 |
+
# Header logo
|
| 156 |
+
gr.HTML('<div class="logo-container"><img src="/gradio_api/file=assets/voxcpm_logo.png" alt="VoxCPM Logo"></div>')
|
| 157 |
+
|
| 158 |
+
# Quick Start
|
| 159 |
+
with gr.Accordion("📋 Quick Start Guide |快速入门", open=False, elem_id="acc_quick"):
|
| 160 |
+
gr.Markdown("""
|
| 161 |
+
### How to Use |使用说明
|
| 162 |
+
1. **(Optional) Provide a Voice Prompt** - Upload or record an audio clip to provide the desired voice characteristics for synthesis.
|
| 163 |
+
**(可选)提供参考声音** - 上传或录制一段音频,为声音合成提供音色、语调和情感等个性化特征
|
| 164 |
+
2. **(Optional) Enter prompt text** - If you provided a voice prompt, enter the corresponding transcript here (auto-recognition available).
|
| 165 |
+
**(可选项)输入参考文本** - 如果提供了参考语音,请输入其对应的文本内容(支持自动识别)。
|
| 166 |
+
3. **Enter target text** - Type the text you want the model to speak.
|
| 167 |
+
**输入目标文本** - 输入您希望模型朗读的文字内容。
|
| 168 |
+
4. **Generate Speech** - Click the "Generate" button to create your audio.
|
| 169 |
+
**生成语音** - 点击"生成"按钮,即可为您创造出音频。
|
| 170 |
+
""")
|
| 171 |
+
|
| 172 |
+
# Pro Tips
|
| 173 |
+
with gr.Accordion("💡 Pro Tips |使用建议", open=False, elem_id="acc_tips"):
|
| 174 |
+
gr.Markdown("""
|
| 175 |
+
### Prompt Speech Enhancement|参考语音降噪
|
| 176 |
+
- **Enable** to remove background noise for a clean, studio-like voice, with an external ZipEnhancer component.
|
| 177 |
+
**启用**:通过 ZipEnhancer 组件消除背景噪音,获得更好的音质。
|
| 178 |
+
- **Disable** to preserve the original audio's background atmosphere.
|
| 179 |
+
**禁用**:保留原始音频的背景环境声,如果想复刻相应声学环境。
|
| 180 |
+
|
| 181 |
+
### Text Normalization|文本正则化
|
| 182 |
+
- **Enable** to process general text with an external WeTextProcessing component.
|
| 183 |
+
**启用**:使用 WeTextProcessing 组件,可处理常见文本。
|
| 184 |
+
- **Disable** to use VoxCPM's native text understanding ability. For example, it supports phonemes input ({HH AH0 L OW1}), try it!
|
| 185 |
+
**禁用**:将使用 VoxCPM 内置的文本理解能力。如,支持音素输入(如 {da4}{jia1}好)和公式符号合成,尝试一下!
|
| 186 |
+
|
| 187 |
+
### CFG Value|CFG 值
|
| 188 |
+
- **Lower CFG** if the voice prompt sounds strained or expressive.
|
| 189 |
+
**调低**:如果提示语音听起来不自然或过于夸张。
|
| 190 |
+
- **Higher CFG** for better adherence to the prompt speech style or input text.
|
| 191 |
+
**调高**:为更好地贴合提示音频的风格或输入文本。
|
| 192 |
+
|
| 193 |
+
### Inference Timesteps|推理时间步
|
| 194 |
+
- **Lower** for faster synthesis speed.
|
| 195 |
+
**调低**:合成速度更快。
|
| 196 |
+
- **Higher** for better synthesis quality.
|
| 197 |
+
**调高**:合成质量更佳。
|
| 198 |
+
""")
|
| 199 |
+
|
| 200 |
+
# Main controls
|
| 201 |
+
with gr.Row():
|
| 202 |
+
with gr.Column():
|
| 203 |
+
prompt_wav = gr.Audio(
|
| 204 |
+
sources=["upload", 'microphone'],
|
| 205 |
+
type="filepath",
|
| 206 |
+
label="Prompt Speech (Optional, or let VoxCPM improvise)",
|
| 207 |
+
value="./examples/example.wav",
|
| 208 |
+
)
|
| 209 |
+
DoDenoisePromptAudio = gr.Checkbox(
|
| 210 |
+
value=False,
|
| 211 |
+
label="Prompt Speech Enhancement",
|
| 212 |
+
elem_id="chk_denoise",
|
| 213 |
+
info="We use ZipEnhancer model to denoise the prompt audio."
|
| 214 |
+
)
|
| 215 |
+
with gr.Row():
|
| 216 |
+
prompt_text = gr.Textbox(
|
| 217 |
+
value="Just by listening a few minutes a day, you'll be able to eliminate negative thoughts by conditioning your mind to be more positive.",
|
| 218 |
+
label="Prompt Text",
|
| 219 |
+
placeholder="Please enter the prompt text. Automatic recognition is supported, and you can correct the results yourself..."
|
| 220 |
+
)
|
| 221 |
+
run_btn = gr.Button("Generate Speech", variant="primary")
|
| 222 |
+
|
| 223 |
+
with gr.Column():
|
| 224 |
+
cfg_value = gr.Slider(
|
| 225 |
+
minimum=1.0,
|
| 226 |
+
maximum=3.0,
|
| 227 |
+
value=2.0,
|
| 228 |
+
step=0.1,
|
| 229 |
+
label="CFG Value (Guidance Scale)",
|
| 230 |
+
info="Higher values increase adherence to prompt, lower values allow more creativity"
|
| 231 |
+
)
|
| 232 |
+
inference_timesteps = gr.Slider(
|
| 233 |
+
minimum=4,
|
| 234 |
+
maximum=30,
|
| 235 |
+
value=10,
|
| 236 |
+
step=1,
|
| 237 |
+
label="Inference Timesteps",
|
| 238 |
+
info="Number of inference timesteps for generation (higher values may improve quality but slower)"
|
| 239 |
+
)
|
| 240 |
+
with gr.Row():
|
| 241 |
+
text = gr.Textbox(
|
| 242 |
+
value="VoxCPM is an innovative end-to-end TTS model from ModelBest, designed to generate highly realistic speech.",
|
| 243 |
+
label="Target Text",
|
| 244 |
+
)
|
| 245 |
+
with gr.Row():
|
| 246 |
+
DoNormalizeText = gr.Checkbox(
|
| 247 |
+
value=False,
|
| 248 |
+
label="Text Normalization",
|
| 249 |
+
elem_id="chk_normalize",
|
| 250 |
+
info="We use wetext library to normalize the input text."
|
| 251 |
+
)
|
| 252 |
+
audio_output = gr.Audio(label="Output Audio")
|
| 253 |
+
|
| 254 |
+
# Wiring
|
| 255 |
+
run_btn.click(
|
| 256 |
+
fn=demo.generate_tts_audio,
|
| 257 |
+
inputs=[text, prompt_wav, prompt_text, cfg_value, inference_timesteps, DoNormalizeText, DoDenoisePromptAudio],
|
| 258 |
+
outputs=[audio_output],
|
| 259 |
+
show_progress=True,
|
| 260 |
+
api_name="generate",
|
| 261 |
+
)
|
| 262 |
+
prompt_wav.change(fn=demo.prompt_wav_recognition, inputs=[prompt_wav], outputs=[prompt_text])
|
| 263 |
+
|
| 264 |
+
return interface
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
# ---------- Launch ----------
|
| 268 |
+
if __name__ == "__main__":
|
| 269 |
+
demo = VoxCPMDemo()
|
| 270 |
+
interface = create_demo_interface(demo)
|
| 271 |
+
interface.queue(max_size=10).launch(
|
| 272 |
+
server_name="0.0.0.0",
|
| 273 |
+
server_port=int(os.environ.get("PORT", 7860))
|
| 274 |
+
)
|