Spaces:
Sleeping
Sleeping
final app
Browse files- galis_app.py +133 -72
- llm/related_work_generator.py +13 -30
- model/mlp.py +0 -137
- model/paper_similarity.py +22 -27
- model/simple_gcn_model.py +0 -37
- model/train.py +0 -139
galis_app.py
CHANGED
|
@@ -2,7 +2,10 @@ from pathlib import Path
|
|
| 2 |
import streamlit as st
|
| 3 |
from dataset.ogbn_link_pred_dataset import OGBNLinkPredDataset
|
| 4 |
from model.paper_similarity import PaperSimilarityFinder
|
| 5 |
-
from llm.related_work_generator import
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
@st.cache_resource
|
|
@@ -17,72 +20,116 @@ def load_similarity_finder():
|
|
| 17 |
model_name=model_name,
|
| 18 |
embeddings_cache_path=embeddings_dir,
|
| 19 |
)
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
|
| 23 |
def format_top_k_predictions_from_similarity(similar_papers: list) -> str:
|
| 24 |
markdown_list = []
|
| 25 |
for i, (idx, score, text) in enumerate(similar_papers):
|
| 26 |
-
title = text.split(
|
| 27 |
-
markdown_list.append(f"{i + 1}.
|
| 28 |
return "\n".join(markdown_list)
|
| 29 |
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
def app():
|
| 32 |
st.set_page_config(page_title="Galis", layout="wide")
|
| 33 |
st.title("Galis")
|
|
|
|
|
|
|
| 34 |
|
| 35 |
if "references" not in st.session_state:
|
| 36 |
-
st.session_state.references =
|
| 37 |
if "related_work" not in st.session_state:
|
| 38 |
-
st.session_state.related_work =
|
| 39 |
if "abstract_title" not in st.session_state:
|
| 40 |
st.session_state.abstract_title = ""
|
| 41 |
if "abstract_text" not in st.session_state:
|
| 42 |
st.session_state.abstract_text = ""
|
| 43 |
|
| 44 |
-
similarity_finder, dataset = load_similarity_finder()
|
| 45 |
|
| 46 |
col1, col2 = st.columns(2, gap="large")
|
| 47 |
|
| 48 |
-
with col2:
|
| 49 |
-
references_placeholder = st.empty()
|
| 50 |
-
related_work_placeholder = st.empty()
|
| 51 |
-
|
| 52 |
with col1:
|
| 53 |
st.header("Abstract Title")
|
| 54 |
-
|
| 55 |
-
"Paste your title here",
|
| 56 |
-
st.session_state.abstract_title,
|
| 57 |
-
key="abstract_title_input",
|
| 58 |
-
label_visibility="collapsed",
|
| 59 |
)
|
| 60 |
|
| 61 |
st.header("Abstract Text")
|
| 62 |
-
|
| 63 |
"Paste your abstract here",
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
height=100,
|
| 67 |
label_visibility="collapsed",
|
| 68 |
)
|
| 69 |
|
| 70 |
-
st.
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
| 73 |
)
|
| 74 |
|
| 75 |
-
if uploaded_file is not None:
|
| 76 |
-
content = uploaded_file.getvalue().decode("utf-8").splitlines()
|
| 77 |
-
st.session_state.abstract_title = content[0] if content else ""
|
| 78 |
-
st.session_state.abstract_text = (
|
| 79 |
-
"\n".join(content[1:]) if len(content) > 1 else ""
|
| 80 |
-
)
|
| 81 |
-
st.rerun()
|
| 82 |
-
|
| 83 |
-
st.session_state.abstract_title = abstract_title
|
| 84 |
-
st.session_state.abstract_text = abstract_input
|
| 85 |
-
|
| 86 |
num_citations = st.number_input(
|
| 87 |
"Number of suggestions",
|
| 88 |
min_value=1,
|
|
@@ -93,49 +140,63 @@ def app():
|
|
| 93 |
)
|
| 94 |
|
| 95 |
if st.button("Suggest References and related work", type="primary"):
|
| 96 |
-
if
|
|
|
|
|
|
|
|
|
|
| 97 |
st.warning("Please provide both a title and an abstract.")
|
| 98 |
else:
|
| 99 |
-
st.session_state.references =
|
| 100 |
-
st.session_state.related_work =
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
with related_work_placeholder.container():
|
| 119 |
-
with st.spinner("Generating related work section..."):
|
| 120 |
-
related_work = generate_related_work(
|
| 121 |
-
st.session_state.abstract_title,
|
| 122 |
-
st.session_state.abstract_text,
|
| 123 |
-
st.session_state.references,
|
| 124 |
-
)
|
| 125 |
-
st.session_state.related_work = related_work
|
| 126 |
-
|
| 127 |
-
if st.session_state.references:
|
| 128 |
-
with references_placeholder.container():
|
| 129 |
st.header("Suggested References")
|
| 130 |
-
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
-
if st.session_state.related_work:
|
| 134 |
-
with related_work_placeholder.container():
|
| 135 |
st.header("Suggested Related Works")
|
| 136 |
-
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
|
| 140 |
if __name__ == "__main__":
|
| 141 |
-
app()
|
|
|
|
| 2 |
import streamlit as st
|
| 3 |
from dataset.ogbn_link_pred_dataset import OGBNLinkPredDataset
|
| 4 |
from model.paper_similarity import PaperSimilarityFinder
|
| 5 |
+
from llm.related_work_generator import (
|
| 6 |
+
generate_related_work,
|
| 7 |
+
create_related_work_pipeline,
|
| 8 |
+
)
|
| 9 |
|
| 10 |
|
| 11 |
@st.cache_resource
|
|
|
|
| 20 |
model_name=model_name,
|
| 21 |
embeddings_cache_path=embeddings_dir,
|
| 22 |
)
|
| 23 |
+
|
| 24 |
+
pipeline = create_related_work_pipeline()
|
| 25 |
+
|
| 26 |
+
return pipeline, similarity_finder, dataset
|
| 27 |
|
| 28 |
|
| 29 |
def format_top_k_predictions_from_similarity(similar_papers: list) -> str:
|
| 30 |
markdown_list = []
|
| 31 |
for i, (idx, score, text) in enumerate(similar_papers):
|
| 32 |
+
title = text.split("\n")[0].strip()
|
| 33 |
+
markdown_list.append(f"{i + 1}. {title} (Similarity: {score:.4f})")
|
| 34 |
return "\n".join(markdown_list)
|
| 35 |
|
| 36 |
|
| 37 |
+
def process_uploaded_file():
|
| 38 |
+
try:
|
| 39 |
+
uploaded_file = st.session_state.file_uploader
|
| 40 |
+
if uploaded_file is not None:
|
| 41 |
+
content = uploaded_file.getvalue().decode("utf-8").splitlines()
|
| 42 |
+
st.session_state.abstract_title = content[0] if content else ""
|
| 43 |
+
st.session_state.abstract_text = (
|
| 44 |
+
"\n".join(content[1:]) if len(content) > 1 else ""
|
| 45 |
+
)
|
| 46 |
+
except Exception as e:
|
| 47 |
+
st.error(f"Error processing file: {e}")
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
GALIS_DESCRIPTION = """
|
| 51 |
+
### About GALIS
|
| 52 |
+
|
| 53 |
+
**GALIS** is a web-based application designed to streamline and improve the creation of related work and
|
| 54 |
+
references sections for research papers. It leverages an existing semantic graph that captures the
|
| 55 |
+
relationships and core concepts among cited papers to guide language model outputs.
|
| 56 |
+
|
| 57 |
+
### Objective
|
| 58 |
+
The primary objective is to provide a practical tool that helps researchers generate high-quality, coherent
|
| 59 |
+
related work and references sections, making the process of synthesizing literature more efficient and
|
| 60 |
+
insightful.
|
| 61 |
+
|
| 62 |
+
---
|
| 63 |
+
|
| 64 |
+
### How to Use GALIS
|
| 65 |
+
|
| 66 |
+
#### Option 1: Manual Input
|
| 67 |
+
1. **Enter your paper title** in the "Abstract Title" field
|
| 68 |
+
2. **Paste your abstract** in the "Abstract Text" area
|
| 69 |
+
3. **Set the number of suggestions** you want (1-100 papers)
|
| 70 |
+
4. **Click "Suggest References and related work"**
|
| 71 |
+
|
| 72 |
+
#### Option 2: File Upload
|
| 73 |
+
1. **Prepare a .txt file** with:
|
| 74 |
+
- **First line**: Your paper title
|
| 75 |
+
- **Remaining lines**: Your abstract text
|
| 76 |
+
2. **Upload the file** using the file uploader
|
| 77 |
+
3. **Set the number of suggestions** you want (1-100 papers)
|
| 78 |
+
4. **Click "Suggest References and related work"**
|
| 79 |
+
|
| 80 |
+
#### What You'll Get
|
| 81 |
+
- **Suggested References**: A curated list of relevant papers based on semantic similarity
|
| 82 |
+
- **Related Work Section**: An automatically generated related work section that synthesizes the suggested
|
| 83 |
+
papers
|
| 84 |
+
- **Regeneration Option**: You can regenerate the related work section if needed
|
| 85 |
+
|
| 86 |
+
---
|
| 87 |
+
|
| 88 |
+
*Note: File uploads are limited to 200MB and must be in .txt format*
|
| 89 |
+
"""
|
| 90 |
+
|
| 91 |
+
|
| 92 |
def app():
|
| 93 |
st.set_page_config(page_title="Galis", layout="wide")
|
| 94 |
st.title("Galis")
|
| 95 |
+
with st.popover("What is Galis?"):
|
| 96 |
+
st.markdown(GALIS_DESCRIPTION)
|
| 97 |
|
| 98 |
if "references" not in st.session_state:
|
| 99 |
+
st.session_state.references = ""
|
| 100 |
if "related_work" not in st.session_state:
|
| 101 |
+
st.session_state.related_work = ""
|
| 102 |
if "abstract_title" not in st.session_state:
|
| 103 |
st.session_state.abstract_title = ""
|
| 104 |
if "abstract_text" not in st.session_state:
|
| 105 |
st.session_state.abstract_text = ""
|
| 106 |
|
| 107 |
+
pipeline, similarity_finder, dataset = load_similarity_finder()
|
| 108 |
|
| 109 |
col1, col2 = st.columns(2, gap="large")
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
with col1:
|
| 112 |
st.header("Abstract Title")
|
| 113 |
+
st.text_input(
|
| 114 |
+
"Paste your title here", key="abstract_title", label_visibility="collapsed"
|
|
|
|
|
|
|
|
|
|
| 115 |
)
|
| 116 |
|
| 117 |
st.header("Abstract Text")
|
| 118 |
+
st.text_area(
|
| 119 |
"Paste your abstract here",
|
| 120 |
+
key="abstract_text",
|
| 121 |
+
height=150,
|
|
|
|
| 122 |
label_visibility="collapsed",
|
| 123 |
)
|
| 124 |
|
| 125 |
+
st.file_uploader(
|
| 126 |
+
"Upload a .txt file here (first line = title, rest = abstract)",
|
| 127 |
+
type=["txt"],
|
| 128 |
+
help="Limit 200MB per file • TXT",
|
| 129 |
+
key="file_uploader",
|
| 130 |
+
on_change=process_uploaded_file,
|
| 131 |
)
|
| 132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
num_citations = st.number_input(
|
| 134 |
"Number of suggestions",
|
| 135 |
min_value=1,
|
|
|
|
| 140 |
)
|
| 141 |
|
| 142 |
if st.button("Suggest References and related work", type="primary"):
|
| 143 |
+
if (
|
| 144 |
+
not st.session_state.abstract_title.strip()
|
| 145 |
+
or not st.session_state.abstract_text.strip()
|
| 146 |
+
):
|
| 147 |
st.warning("Please provide both a title and an abstract.")
|
| 148 |
else:
|
| 149 |
+
st.session_state.references = "LOADING"
|
| 150 |
+
st.session_state.related_work = ""
|
| 151 |
+
|
| 152 |
+
with col2:
|
| 153 |
+
if st.session_state.references == "LOADING":
|
| 154 |
+
with st.spinner("Analyzing abstract and predicting references..."):
|
| 155 |
+
similar_papers = similarity_finder.find_similar_papers(
|
| 156 |
+
title=st.session_state.abstract_title,
|
| 157 |
+
abstract=st.session_state.abstract_text,
|
| 158 |
+
top_k=num_citations,
|
| 159 |
+
)
|
| 160 |
+
st.session_state.references = format_top_k_predictions_from_similarity(
|
| 161 |
+
similar_papers
|
| 162 |
+
)
|
| 163 |
+
st.session_state.related_work = "LOADING"
|
| 164 |
+
st.rerun()
|
| 165 |
+
|
| 166 |
+
if st.session_state.references not in ["", "LOADING"]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
st.header("Suggested References")
|
| 168 |
+
st.text_area(
|
| 169 |
+
"References",
|
| 170 |
+
value=st.session_state.references,
|
| 171 |
+
height=150,
|
| 172 |
+
label_visibility="collapsed",
|
| 173 |
+
key="ref_output",
|
| 174 |
+
)
|
| 175 |
|
|
|
|
|
|
|
| 176 |
st.header("Suggested Related Works")
|
| 177 |
+
|
| 178 |
+
if st.session_state.related_work == "LOADING":
|
| 179 |
+
with st.spinner("Generating related work section..."):
|
| 180 |
+
st.session_state.related_work = generate_related_work(
|
| 181 |
+
pipeline,
|
| 182 |
+
st.session_state.abstract_title,
|
| 183 |
+
st.session_state.abstract_text,
|
| 184 |
+
st.session_state.references,
|
| 185 |
+
)
|
| 186 |
+
st.rerun()
|
| 187 |
+
else:
|
| 188 |
+
st.text_area(
|
| 189 |
+
"Related Works",
|
| 190 |
+
value=st.session_state.related_work,
|
| 191 |
+
height=300,
|
| 192 |
+
label_visibility="collapsed",
|
| 193 |
+
key="rw_output",
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
if st.button("Regenerate Related Works"):
|
| 197 |
+
st.session_state.related_work = "LOADING"
|
| 198 |
+
st.rerun()
|
| 199 |
|
| 200 |
|
| 201 |
if __name__ == "__main__":
|
| 202 |
+
app()
|
llm/related_work_generator.py
CHANGED
|
@@ -59,8 +59,8 @@ the novelty and importance of the user's project.
|
|
| 59 |
Use appropriate terminology and focus on concepts, methods, and challenges relevant to that particular field of study.
|
| 60 |
|
| 61 |
7. **Output Format:** Generate only the text for the "Related Work" section. Do not include headers like
|
| 62 |
-
"INSTRUCTIONS
|
| 63 |
-
section text itself, ready to be inserted into an academic paper.
|
| 64 |
"""
|
| 65 |
|
| 66 |
|
|
@@ -74,16 +74,10 @@ def check_api_key():
|
|
| 74 |
|
| 75 |
|
| 76 |
def create_related_work_pipeline():
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
llm = ChatGoogleGenerativeAI(
|
| 80 |
-
model="gemini-2.0-flash-exp",
|
| 81 |
-
temperature=0.3
|
| 82 |
-
)
|
| 83 |
|
| 84 |
prompt = PromptTemplate(
|
| 85 |
-
input_variables=["title", "abstract", "citations"],
|
| 86 |
-
template=PROMPT_TEXT
|
| 87 |
)
|
| 88 |
|
| 89 |
parser = StrOutputParser()
|
|
@@ -93,24 +87,12 @@ def create_related_work_pipeline():
|
|
| 93 |
return chain
|
| 94 |
|
| 95 |
|
| 96 |
-
def generate_related_work(
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
abstract: The paper's abstract
|
| 103 |
-
citations_text: Text with citations (can be a list or a string)
|
| 104 |
-
|
| 105 |
-
Returns:
|
| 106 |
-
The generated Related Work section
|
| 107 |
-
"""
|
| 108 |
-
pipeline = create_related_work_pipeline()
|
| 109 |
-
result = pipeline.invoke({
|
| 110 |
-
"title": title,
|
| 111 |
-
"abstract": abstract,
|
| 112 |
-
"citations": citations_text
|
| 113 |
-
})
|
| 114 |
return result
|
| 115 |
|
| 116 |
|
|
@@ -141,11 +123,12 @@ Top 5 Citation Predictions:
|
|
| 141 |
print("-" * 50)
|
| 142 |
|
| 143 |
try:
|
| 144 |
-
|
|
|
|
| 145 |
print(related_work)
|
| 146 |
except Exception as e:
|
| 147 |
print(f"Error: {e}")
|
| 148 |
print("1. Create a .env file in the same folder as the script")
|
| 149 |
print("2. Add the line: GOOGLE_API_KEY=your_key")
|
| 150 |
print("3. Get the key at: https://makersuite.google.com/app/apikey")
|
| 151 |
-
check_api_key()
|
|
|
|
| 59 |
Use appropriate terminology and focus on concepts, methods, and challenges relevant to that particular field of study.
|
| 60 |
|
| 61 |
7. **Output Format:** Generate only the text for the "Related Work" section. Do not include headers like
|
| 62 |
+
"INSTRUCTIONS" "PAPER TITLE", "RELATED WORK" or "PROVIDED CITATIONS" in the final output. Do not use markdown syntax.
|
| 63 |
+
The entire response should be the section text itself, ready to be inserted into an academic paper.
|
| 64 |
"""
|
| 65 |
|
| 66 |
|
|
|
|
| 74 |
|
| 75 |
|
| 76 |
def create_related_work_pipeline():
|
| 77 |
+
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash-exp", temperature=0.3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
prompt = PromptTemplate(
|
| 80 |
+
input_variables=["title", "abstract", "citations"], template=PROMPT_TEXT
|
|
|
|
| 81 |
)
|
| 82 |
|
| 83 |
parser = StrOutputParser()
|
|
|
|
| 87 |
return chain
|
| 88 |
|
| 89 |
|
| 90 |
+
def generate_related_work(
|
| 91 |
+
pipeline, title: str, abstract: str, citations_text: str
|
| 92 |
+
) -> str:
|
| 93 |
+
result = pipeline.invoke(
|
| 94 |
+
{"title": title, "abstract": abstract, "citations": citations_text}
|
| 95 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
return result
|
| 97 |
|
| 98 |
|
|
|
|
| 123 |
print("-" * 50)
|
| 124 |
|
| 125 |
try:
|
| 126 |
+
pipeline = create_related_work_pipeline()
|
| 127 |
+
related_work = generate_related_work(pipeline, title, abstract, citations)
|
| 128 |
print(related_work)
|
| 129 |
except Exception as e:
|
| 130 |
print(f"Error: {e}")
|
| 131 |
print("1. Create a .env file in the same folder as the script")
|
| 132 |
print("2. Add the line: GOOGLE_API_KEY=your_key")
|
| 133 |
print("3. Get the key at: https://makersuite.google.com/app/apikey")
|
| 134 |
+
check_api_key()
|
model/mlp.py
DELETED
|
@@ -1,137 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn as nn
|
| 3 |
-
import torch.nn.functional as F
|
| 4 |
-
from sklearn.metrics import roc_auc_score, average_precision_score
|
| 5 |
-
import numpy as np
|
| 6 |
-
from dataset.ogbn_link_pred_dataset import (
|
| 7 |
-
OGBNLinkPredDataset,
|
| 8 |
-
OGBNLinkPredNegDataset,
|
| 9 |
-
# OGBNLinkPredNegDataset2,
|
| 10 |
-
)
|
| 11 |
-
from pathlib import Path
|
| 12 |
-
from sentence_transformers import SentenceTransformer
|
| 13 |
-
import argparse
|
| 14 |
-
|
| 15 |
-
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 16 |
-
BATCH_SIZE = 2048
|
| 17 |
-
NUM_EPOCHS = 50
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
def parse_args():
|
| 21 |
-
parser = argparse.ArgumentParser()
|
| 22 |
-
parser.add_argument(
|
| 23 |
-
"--custom-neg", action=argparse.BooleanOptionalAction, default=False
|
| 24 |
-
)
|
| 25 |
-
parser.add_argument(
|
| 26 |
-
"--bert-embed", action=argparse.BooleanOptionalAction, default=False
|
| 27 |
-
)
|
| 28 |
-
return parser.parse_args()
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
# --- Feature builder ---
|
| 32 |
-
def edge_features(emb, ei):
|
| 33 |
-
u, v = ei
|
| 34 |
-
eu, ev = emb[u], emb[v]
|
| 35 |
-
return torch.cat([eu * ev, torch.abs(eu - ev)], dim=1)
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
# --- Simple MLP ---
|
| 39 |
-
class PairMLP(nn.Module):
|
| 40 |
-
def __init__(self, in_dim, hidden=256):
|
| 41 |
-
super().__init__()
|
| 42 |
-
self.fc1 = nn.Linear(in_dim, hidden)
|
| 43 |
-
self.fc2 = nn.Linear(hidden, 1)
|
| 44 |
-
|
| 45 |
-
def forward(self, x):
|
| 46 |
-
x = F.relu(self.fc1(x))
|
| 47 |
-
return self.fc2(x).squeeze(-1)
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
# --- Training loop ---
|
| 51 |
-
def run_epoch(data, train=True):
|
| 52 |
-
model.train(train)
|
| 53 |
-
total_loss = 0
|
| 54 |
-
idx = (
|
| 55 |
-
torch.randperm(data.edge_label.size(0))
|
| 56 |
-
if train
|
| 57 |
-
else torch.arange(data.edge_label.size(0))
|
| 58 |
-
)
|
| 59 |
-
for i in range(0, len(idx), BATCH_SIZE):
|
| 60 |
-
batch_end = min(i + BATCH_SIZE, data.edge_label.size(0))
|
| 61 |
-
batch_idx = idx[i:batch_end]
|
| 62 |
-
feats = edge_features(emb, data.edge_label_index[:, batch_idx]).to(DEVICE)
|
| 63 |
-
labels = data.edge_label[batch_idx].float().to(DEVICE)
|
| 64 |
-
scores = model(feats)
|
| 65 |
-
loss = F.binary_cross_entropy_with_logits(scores, labels)
|
| 66 |
-
if train:
|
| 67 |
-
opt.zero_grad()
|
| 68 |
-
loss.backward()
|
| 69 |
-
opt.step()
|
| 70 |
-
total_loss += loss.item() * len(batch_idx)
|
| 71 |
-
return total_loss / len(idx)
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
@torch.no_grad()
|
| 75 |
-
def evaluate(data):
|
| 76 |
-
scores_all, labels_all = [], []
|
| 77 |
-
for i in range(0, data.edge_label.size(0), BATCH_SIZE):
|
| 78 |
-
batch_end = min(i + BATCH_SIZE, data.edge_label.size(0))
|
| 79 |
-
feats = edge_features(emb, data.edge_label_index[:, i:batch_end]).to(DEVICE)
|
| 80 |
-
labels = data.edge_label[i : i + BATCH_SIZE]
|
| 81 |
-
scores = torch.sigmoid(model(feats)).cpu().numpy()
|
| 82 |
-
scores_all.append(scores)
|
| 83 |
-
labels_all.append(labels.numpy())
|
| 84 |
-
y_scores = np.concatenate(scores_all)
|
| 85 |
-
y_true = np.concatenate(labels_all)
|
| 86 |
-
return roc_auc_score(y_true, y_scores), average_precision_score(y_true, y_scores)
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
if __name__ == "__main__":
|
| 90 |
-
args = parse_args()
|
| 91 |
-
USE_CUSTOM_NEG = args.custom_neg
|
| 92 |
-
USE_BERT_EMBED = args.bert_embed
|
| 93 |
-
|
| 94 |
-
# --- Load dataset + frozen embeddings ---
|
| 95 |
-
if USE_CUSTOM_NEG:
|
| 96 |
-
print("using hard negatives")
|
| 97 |
-
dataset = OGBNLinkPredNegDataset(val_size=0.1, test_size=0.2)
|
| 98 |
-
else:
|
| 99 |
-
print("using random negatives")
|
| 100 |
-
dataset = OGBNLinkPredDataset(val_size=0.1, test_size=0.2)
|
| 101 |
-
if USE_BERT_EMBED:
|
| 102 |
-
print("using BERT embeds")
|
| 103 |
-
if Path("model/embeddings.pth").exists():
|
| 104 |
-
emb = torch.load("model/embeddings.pth", map_location=DEVICE)
|
| 105 |
-
else:
|
| 106 |
-
st = SentenceTransformer("bongsoo/kpf-sbert-128d-v1", device=DEVICE)
|
| 107 |
-
emb = st.encode(
|
| 108 |
-
dataset.corpus, convert_to_tensor=True, show_progress_bar=True
|
| 109 |
-
)
|
| 110 |
-
Path("model").mkdir(parents=True, exist_ok=True)
|
| 111 |
-
torch.save(emb, "model/embeddings.pth")
|
| 112 |
-
emb = emb.to(DEVICE)
|
| 113 |
-
else:
|
| 114 |
-
print("using skipgram embeds")
|
| 115 |
-
emb = dataset.data.x
|
| 116 |
-
|
| 117 |
-
train_data, val_data, test_data = dataset.get_splits()
|
| 118 |
-
|
| 119 |
-
model = PairMLP(emb.size(1) * 2).to(DEVICE)
|
| 120 |
-
opt = torch.optim.AdamW(model.parameters(), lr=1e-3, weight_decay=1e-4)
|
| 121 |
-
|
| 122 |
-
# --- Training ---
|
| 123 |
-
best_roc, best_ap = 0.0, 0.0
|
| 124 |
-
for epoch in range(NUM_EPOCHS):
|
| 125 |
-
loss = run_epoch(train_data, train=True)
|
| 126 |
-
val_roc, val_ap = evaluate(val_data)
|
| 127 |
-
if val_roc > best_roc:
|
| 128 |
-
torch.save(
|
| 129 |
-
model.state_dict(), f"model_roc{str(val_roc)[:4].replace('.', '_')}.pth"
|
| 130 |
-
)
|
| 131 |
-
print(
|
| 132 |
-
f"Epoch {epoch + 1} | Loss {loss:.4f} | Val ROC {val_roc:.4f} | Val AP {val_ap:.4f}"
|
| 133 |
-
)
|
| 134 |
-
|
| 135 |
-
# --- Final test ---
|
| 136 |
-
test_roc, test_ap = evaluate(test_data)
|
| 137 |
-
print(f"Test ROC {test_roc:.4f} | Test AP {test_ap:.4f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model/paper_similarity.py
CHANGED
|
@@ -236,9 +236,9 @@ class PaperSimilarityFinder:
|
|
| 236 |
|
| 237 |
def compare_methods(self, title: str, abstract: str, top_k: int = 5):
|
| 238 |
"""Compare TF-IDF vs sentence embeddings"""
|
| 239 |
-
if not hasattr(self,
|
| 240 |
self._setup_tfidf()
|
| 241 |
-
if not hasattr(self,
|
| 242 |
self._setup_sentence_embeddings()
|
| 243 |
|
| 244 |
query = f"{title}\n{abstract}"
|
|
@@ -246,10 +246,8 @@ class PaperSimilarityFinder:
|
|
| 246 |
tfidf_results = self._find_similar_tfidf(query, top_k)
|
| 247 |
sent_results = self._find_similar_sentence_transformer(query, top_k)
|
| 248 |
|
| 249 |
-
return {
|
| 250 |
-
|
| 251 |
-
'sentence_transformer': sent_results
|
| 252 |
-
}
|
| 253 |
|
| 254 |
if __name__ == "__main__":
|
| 255 |
dataset = OGBNLinkPredDataset()
|
|
@@ -265,28 +263,27 @@ if __name__ == "__main__":
|
|
| 265 |
embeddings_cache_path=embeddings_dir,
|
| 266 |
)
|
| 267 |
|
| 268 |
-
my_title =
|
|
|
|
|
|
|
| 269 |
my_abstract = """
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
higher representative power, our approach paves the way
|
| 285 |
-
for broader adoption of INR models for generative modeling tasks in complex domains. The code is available at
|
| 286 |
-
https://github.com/Rajhans0/Poly_INR
|
| 287 |
"""
|
| 288 |
|
| 289 |
-
top_k =
|
| 290 |
print(f"\nTop {top_k} Citation Predictions:\n")
|
| 291 |
|
| 292 |
top_papers = similarity_finder.find_similar_papers(
|
|
@@ -311,5 +308,3 @@ if __name__ == "__main__":
|
|
| 311 |
for idx, score, text in top_papers_cached:
|
| 312 |
title = text.split("\n")[0].strip()
|
| 313 |
print(f"Title: '{title}'")
|
| 314 |
-
|
| 315 |
-
|
|
|
|
| 236 |
|
| 237 |
def compare_methods(self, title: str, abstract: str, top_k: int = 5):
|
| 238 |
"""Compare TF-IDF vs sentence embeddings"""
|
| 239 |
+
if not hasattr(self, "corpus_vectors"):
|
| 240 |
self._setup_tfidf()
|
| 241 |
+
if not hasattr(self, "corpus_embeddings"):
|
| 242 |
self._setup_sentence_embeddings()
|
| 243 |
|
| 244 |
query = f"{title}\n{abstract}"
|
|
|
|
| 246 |
tfidf_results = self._find_similar_tfidf(query, top_k)
|
| 247 |
sent_results = self._find_similar_sentence_transformer(query, top_k)
|
| 248 |
|
| 249 |
+
return {"tfidf": tfidf_results, "sentence_transformer": sent_results}
|
| 250 |
+
|
|
|
|
|
|
|
| 251 |
|
| 252 |
if __name__ == "__main__":
|
| 253 |
dataset = OGBNLinkPredDataset()
|
|
|
|
| 263 |
embeddings_cache_path=embeddings_dir,
|
| 264 |
)
|
| 265 |
|
| 266 |
+
my_title = (
|
| 267 |
+
"PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation"
|
| 268 |
+
)
|
| 269 |
my_abstract = """
|
| 270 |
+
Point cloud is an important type of geometric data
|
| 271 |
+
structure. Due to its irregular format, most researchers
|
| 272 |
+
transform such data to regular 3D voxel grids or collections
|
| 273 |
+
of images. This, however, renders data unnecessarily
|
| 274 |
+
voluminous and causes issues. In this paper, we design a
|
| 275 |
+
novel type of neural network that directly consumes point
|
| 276 |
+
clouds, which well respects the permutation invariance of
|
| 277 |
+
points in the input. Our network, named PointNet, provides a unified architecture for applications ranging from
|
| 278 |
+
object classification, part segmentation, to scene semantic
|
| 279 |
+
parsing. Though simple, PointNet is highly efficient and
|
| 280 |
+
effective. Empirically, it shows strong performance on
|
| 281 |
+
par or even better than state of the art. Theoretically,
|
| 282 |
+
we provide analysis towards understanding of what the
|
| 283 |
+
network has learnt and why the network is r
|
|
|
|
|
|
|
|
|
|
| 284 |
"""
|
| 285 |
|
| 286 |
+
top_k = 10
|
| 287 |
print(f"\nTop {top_k} Citation Predictions:\n")
|
| 288 |
|
| 289 |
top_papers = similarity_finder.find_similar_papers(
|
|
|
|
| 308 |
for idx, score, text in top_papers_cached:
|
| 309 |
title = text.split("\n")[0].strip()
|
| 310 |
print(f"Title: '{title}'")
|
|
|
|
|
|
model/simple_gcn_model.py
DELETED
|
@@ -1,37 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn.functional as F
|
| 3 |
-
from torch_geometric.nn import GCNConv
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
class EdgeDecoder(torch.nn.Module):
|
| 7 |
-
"""Predict citation existence of two node embeddings."""
|
| 8 |
-
|
| 9 |
-
def __init__(self, in_channels):
|
| 10 |
-
super().__init__()
|
| 11 |
-
self.linear = torch.nn.Linear(in_channels * 2, 1)
|
| 12 |
-
|
| 13 |
-
def forward(self, z, edge_index):
|
| 14 |
-
row, col = edge_index
|
| 15 |
-
# Concatenate the embeddings of the two nodes
|
| 16 |
-
z_cat = torch.cat([z[row], z[col]], dim=-1)
|
| 17 |
-
return self.linear(z_cat).squeeze(-1)
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
class SimpleGCN(torch.nn.Module):
|
| 21 |
-
"""Include encoder and decoder part. Encoder creates embedding for given node and decoder predict link existence between node embeddings."""
|
| 22 |
-
|
| 23 |
-
def __init__(self, in_channels, hidden_channels, out_channels):
|
| 24 |
-
super().__init__()
|
| 25 |
-
self.conv1 = GCNConv(in_channels, hidden_channels)
|
| 26 |
-
self.conv2 = GCNConv(hidden_channels, out_channels)
|
| 27 |
-
self.decoder = EdgeDecoder(out_channels)
|
| 28 |
-
|
| 29 |
-
def forward(self, x, edge_index):
|
| 30 |
-
x = self.conv1(x, edge_index).relu()
|
| 31 |
-
x = F.dropout(x, p=0.5, training=self.training)
|
| 32 |
-
z = self.conv2(x, edge_index)
|
| 33 |
-
return z
|
| 34 |
-
|
| 35 |
-
def decode(self, z, edge_label_index):
|
| 36 |
-
# We pass the edge_label_index to the decoder, which contains both pos and neg edges
|
| 37 |
-
return self.decoder(z, edge_label_index)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model/train.py
DELETED
|
@@ -1,139 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import numpy as np
|
| 3 |
-
from torch_geometric.loader import LinkNeighborLoader
|
| 4 |
-
from sklearn.metrics import roc_auc_score, accuracy_score
|
| 5 |
-
from tqdm import tqdm
|
| 6 |
-
from model.simple_gcn_model import SimpleGCN
|
| 7 |
-
from dataset.ogbn_link_pred_dataset import OGBNLinkPredDataset
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
BATCH_SIZE = 128
|
| 11 |
-
NUM_EPOCHS = 20
|
| 12 |
-
LR = 0.001
|
| 13 |
-
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 14 |
-
|
| 15 |
-
# data
|
| 16 |
-
dataset = OGBNLinkPredDataset(val_size=0.1, test_size=0.2)
|
| 17 |
-
train_data, val_data, test_data = dataset.get_splits()
|
| 18 |
-
|
| 19 |
-
train_loader = LinkNeighborLoader(
|
| 20 |
-
train_data,
|
| 21 |
-
num_neighbors=[-1, -1], # Use all neighbors
|
| 22 |
-
neg_sampling_ratio=1.0, # 1 negative sample per positive edge
|
| 23 |
-
edge_label_index=train_data.edge_label_index,
|
| 24 |
-
edge_label=train_data.edge_label,
|
| 25 |
-
batch_size=BATCH_SIZE,
|
| 26 |
-
shuffle=True,
|
| 27 |
-
num_workers=4,
|
| 28 |
-
)
|
| 29 |
-
|
| 30 |
-
val_loader = LinkNeighborLoader(
|
| 31 |
-
val_data,
|
| 32 |
-
num_neighbors=[-1, -1],
|
| 33 |
-
neg_sampling_ratio=0.0, # RandomLinkSplit already added negative edges
|
| 34 |
-
edge_label_index=val_data.edge_label_index,
|
| 35 |
-
edge_label=val_data.edge_label,
|
| 36 |
-
batch_size=BATCH_SIZE,
|
| 37 |
-
shuffle=False,
|
| 38 |
-
num_workers=4,
|
| 39 |
-
)
|
| 40 |
-
|
| 41 |
-
test_loader = LinkNeighborLoader(
|
| 42 |
-
test_data,
|
| 43 |
-
num_neighbors=[-1, -1],
|
| 44 |
-
neg_sampling_ratio=0.0,
|
| 45 |
-
edge_label_index=test_data.edge_label_index,
|
| 46 |
-
edge_label=test_data.edge_label,
|
| 47 |
-
batch_size=BATCH_SIZE,
|
| 48 |
-
shuffle=False,
|
| 49 |
-
num_workers=4,
|
| 50 |
-
)
|
| 51 |
-
|
| 52 |
-
# model
|
| 53 |
-
model = SimpleGCN(
|
| 54 |
-
in_channels=dataset.num_features,
|
| 55 |
-
hidden_channels=256,
|
| 56 |
-
out_channels=128,
|
| 57 |
-
).to(DEVICE)
|
| 58 |
-
|
| 59 |
-
optimizer = torch.optim.Adam(model.parameters(), lr=LR)
|
| 60 |
-
criterion = torch.nn.BCEWithLogitsLoss()
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
# training
|
| 64 |
-
def train(train_loader, epoch):
|
| 65 |
-
model.train()
|
| 66 |
-
total_loss = 0
|
| 67 |
-
scaler = torch.GradScaler()
|
| 68 |
-
|
| 69 |
-
pbar = tqdm(train_loader, desc=f"Training Epoch: {epoch}")
|
| 70 |
-
for batch in pbar:
|
| 71 |
-
batch = batch.to(DEVICE)
|
| 72 |
-
optimizer.zero_grad()
|
| 73 |
-
|
| 74 |
-
with torch.autocast(device_type="cuda", dtype=torch.bfloat16, enabled=True):
|
| 75 |
-
z = model(batch.x, batch.edge_index)
|
| 76 |
-
out = model.decode(z, batch.edge_label_index)
|
| 77 |
-
labels = batch.edge_label.float()
|
| 78 |
-
|
| 79 |
-
loss = criterion(out, labels)
|
| 80 |
-
|
| 81 |
-
scaler.scale(loss).backward()
|
| 82 |
-
scaler.step(optimizer)
|
| 83 |
-
scaler.update()
|
| 84 |
-
|
| 85 |
-
total_loss += loss.item()
|
| 86 |
-
pbar.set_postfix(loss=f"{loss.item():.4f}")
|
| 87 |
-
|
| 88 |
-
return total_loss / len(train_loader)
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
@torch.no_grad()
|
| 92 |
-
def calc_metrics(loader):
|
| 93 |
-
model.eval()
|
| 94 |
-
all_scores = []
|
| 95 |
-
all_labels = []
|
| 96 |
-
|
| 97 |
-
pbar = tqdm(loader, desc="Testing")
|
| 98 |
-
for batch in pbar:
|
| 99 |
-
batch = batch.to(DEVICE)
|
| 100 |
-
with torch.autocast(device_type=DEVICE.type, dtype=torch.bfloat16):
|
| 101 |
-
z = model(batch.x, batch.edge_index)
|
| 102 |
-
out = model.decode(z, batch.edge_label_index)
|
| 103 |
-
|
| 104 |
-
scores = torch.sigmoid(out).float().cpu().numpy()
|
| 105 |
-
labels = batch.edge_label.cpu().numpy()
|
| 106 |
-
|
| 107 |
-
all_scores.append(scores)
|
| 108 |
-
all_labels.append(labels)
|
| 109 |
-
|
| 110 |
-
all_scores = np.concatenate(all_scores)
|
| 111 |
-
all_labels = np.concatenate(all_labels)
|
| 112 |
-
|
| 113 |
-
return roc_auc_score(all_labels, all_scores), accuracy_score(
|
| 114 |
-
all_labels, all_scores > 0.5
|
| 115 |
-
)
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
if __name__ == "__main__":
|
| 119 |
-
best_val_auc = 0
|
| 120 |
-
best_auc = 0
|
| 121 |
-
for epoch in range(1, NUM_EPOCHS + 1):
|
| 122 |
-
loss = train(train_loader, epoch)
|
| 123 |
-
val_auc, val_acc = calc_metrics(val_loader)
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
print(
|
| 127 |
-
f"Epoch: {epoch:03d}, Loss: {loss:.4f}, Val AUC: {val_auc:.4f}, Val acc: {val_acc:.4f}",
|
| 128 |
-
end=" ",
|
| 129 |
-
)
|
| 130 |
-
if val_auc > best_val_auc:
|
| 131 |
-
print("New best")
|
| 132 |
-
best_val_auc = val_auc
|
| 133 |
-
best_auc = val_auc
|
| 134 |
-
torch.save(model.state_dict(), "model.pth")
|
| 135 |
-
|
| 136 |
-
test_auc, test_acc = calc_metrics(test_loader)
|
| 137 |
-
|
| 138 |
-
print("-" * 30)
|
| 139 |
-
print(f"Best validation AUC: {best_auc:.4f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|