Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,51 +1,126 @@
|
|
| 1 |
-
import
|
| 2 |
-
import
|
| 3 |
-
from subprocess import run
|
| 4 |
import gradio as gr
|
| 5 |
-
import
|
| 6 |
-
import
|
| 7 |
-
import
|
| 8 |
-
from
|
| 9 |
-
import whisper_timestamped as whisper
|
| 10 |
-
from transformers import pipeline
|
| 11 |
|
| 12 |
-
model =
|
| 13 |
-
sentiment_analysis = pipeline("sentiment-analysis", framework="pt", model="SamLowe/roberta-base-go_emotions", use_fast=True)
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
print("cwd", os.getcwd())
|
| 20 |
-
print(os.listdir())
|
| 21 |
|
| 22 |
def analyze_sentiment(text):
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
| 25 |
return sentiment_results
|
| 26 |
|
| 27 |
|
| 28 |
-
def
|
| 29 |
-
audio =
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
|
| 38 |
-
current_path = os.getcwd()
|
| 39 |
-
common_uuid = uuid.uuid4()
|
| 40 |
-
audio_file = f"{common_uuid}.wav"
|
| 41 |
-
run(["ffmpeg", "-i", 'test_video_1.mp4', audio_file])
|
| 42 |
|
| 43 |
-
|
| 44 |
|
| 45 |
-
return response
|
| 46 |
|
| 47 |
gr.Interface(
|
| 48 |
fn=video_to_audio,
|
| 49 |
-
inputs=gr.Video(),
|
| 50 |
outputs=gr.Textbox()
|
| 51 |
).launch()
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from io import BytesIO
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
+
import cv2
|
| 5 |
+
import requests
|
| 6 |
+
from pydub import AudioSegment
|
| 7 |
+
from faster_whisper import WhisperModel
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
model = WhisperModel("small", device="cpu", compute_type="int8")
|
|
|
|
| 10 |
|
| 11 |
+
API_KEY = os.getenv("API_KEY")
|
| 12 |
+
|
| 13 |
+
FACE_API_URL = "https://api-inference.huggingface.co/models/dima806/facial_emotions_image_detection"
|
| 14 |
+
TEXT_API_URL = "https://api-inference.huggingface.co/models/SamLowe/roberta-base-go_emotions"
|
| 15 |
+
headers = {"Authorization": "Bearer " + API_KEY + ""}
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def extract_frames(video_path):
|
| 19 |
+
cap = cv2.VideoCapture(video_path)
|
| 20 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 21 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 22 |
+
interval = fps
|
| 23 |
+
result = []
|
| 24 |
+
|
| 25 |
+
for i in range(0, total_frames, interval):
|
| 26 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
| 27 |
+
ret, frame = cap.read()
|
| 28 |
+
if ret:
|
| 29 |
+
_, img_encoded = cv2.imencode('.jpg', frame)
|
| 30 |
+
img_bytes = img_encoded.tobytes()
|
| 31 |
+
|
| 32 |
+
response = requests.post(FACE_API_URL, headers=headers, data=img_bytes)
|
| 33 |
+
result.append({item['label']: item['score'] for item in response.json()})
|
| 34 |
+
|
| 35 |
+
print("Frame extraction completed.")
|
| 36 |
+
|
| 37 |
+
cap.release()
|
| 38 |
+
print(result)
|
| 39 |
+
return result
|
| 40 |
|
|
|
|
|
|
|
| 41 |
|
| 42 |
def analyze_sentiment(text):
|
| 43 |
+
response = requests.post(TEXT_API_URL, headers=headers, json=text)
|
| 44 |
+
print(response.json())
|
| 45 |
+
sentiment_list = response.json()[0]
|
| 46 |
+
print(sentiment_list)
|
| 47 |
+
sentiment_results = {result['label']: result['score'] for result in sentiment_list}
|
| 48 |
return sentiment_results
|
| 49 |
|
| 50 |
|
| 51 |
+
def video_to_audio(input_video):
|
| 52 |
+
audio = AudioSegment.from_file('test_video_1.mp4')
|
| 53 |
+
audio_binary = audio.export(format="wav").read()
|
| 54 |
+
audio_bytesio = BytesIO(audio_binary)
|
| 55 |
+
|
| 56 |
+
segments, info = model.transcribe(audio_bytesio, beam_size=5)
|
| 57 |
+
|
| 58 |
+
print("Detected language '%s' with probability %f" % (info.language, info.language_probability))
|
| 59 |
+
|
| 60 |
+
frames_sentiments = extract_frames(input_video)
|
| 61 |
+
|
| 62 |
+
transcript = ''
|
| 63 |
+
final_output = []
|
| 64 |
+
for segment in segments:
|
| 65 |
+
transcript = transcript + segment.text + " "
|
| 66 |
+
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
|
| 67 |
+
transcript_segment_sentiment = analyze_sentiment(segment.text)
|
| 68 |
+
|
| 69 |
+
emotion_totals = {
|
| 70 |
+
'admiration': 0.0,
|
| 71 |
+
'amusement': 0.0,
|
| 72 |
+
'angry': 0.0,
|
| 73 |
+
'annoyance': 0.0,
|
| 74 |
+
'approval': 0.0,
|
| 75 |
+
'caring': 0.0,
|
| 76 |
+
'confusion': 0.0,
|
| 77 |
+
'curiosity': 0.0,
|
| 78 |
+
'desire': 0.0,
|
| 79 |
+
'disappointment': 0.0,
|
| 80 |
+
'disapproval': 0.0,
|
| 81 |
+
'disgust': 0.0,
|
| 82 |
+
'embarrassment': 0.0,
|
| 83 |
+
'excitement': 0.0,
|
| 84 |
+
'fear': 0.0,
|
| 85 |
+
'gratitude': 0.0,
|
| 86 |
+
'grief': 0.0,
|
| 87 |
+
'happy': 0.0,
|
| 88 |
+
'love': 0.0,
|
| 89 |
+
'nervousness': 0.0,
|
| 90 |
+
'optimism': 0.0,
|
| 91 |
+
'pride': 0.0,
|
| 92 |
+
'realization': 0.0,
|
| 93 |
+
'relief': 0.0,
|
| 94 |
+
'remorse': 0.0,
|
| 95 |
+
'sad': 0.0,
|
| 96 |
+
'surprise': 0.0,
|
| 97 |
+
'neutral': 0.0
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
counter = 0
|
| 101 |
+
for i in range(math.ceil(segment.start), math.floor(segment.end)):
|
| 102 |
+
for emotion in frames_sentiments[i].keys():
|
| 103 |
+
emotion_totals[emotion] += frames_sentiments[i].get(emotion)
|
| 104 |
+
counter += 1
|
| 105 |
+
|
| 106 |
+
for emotion in emotion_totals:
|
| 107 |
+
emotion_totals[emotion] /= counter
|
| 108 |
|
| 109 |
+
video_segment_sentiment = emotion_totals
|
| 110 |
|
| 111 |
+
segment_finals = {segment.id: (segment.text, segment.start, segment.end, transcript_segment_sentiment,
|
| 112 |
+
video_segment_sentiment)}
|
| 113 |
+
final_output.append(segment_finals)
|
| 114 |
+
print(segment_finals)
|
| 115 |
+
print(final_output)
|
| 116 |
|
| 117 |
+
print(final_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
+
return final_output
|
| 120 |
|
|
|
|
| 121 |
|
| 122 |
gr.Interface(
|
| 123 |
fn=video_to_audio,
|
| 124 |
+
inputs=gr.Video(sources=["upload"]),
|
| 125 |
outputs=gr.Textbox()
|
| 126 |
).launch()
|