Spaces:
Sleeping
Sleeping
Add application file
Browse files
app.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
| 4 |
+
from qwen_vl_utils import process_vision_info
|
| 5 |
+
|
| 6 |
+
def load_model_and_processor():
|
| 7 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 8 |
+
"Qwen/Qwen2-VL-2B-Instruct", torch_dtype="auto", device_map="auto"
|
| 9 |
+
)
|
| 10 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
|
| 11 |
+
return model, processor
|
| 12 |
+
|
| 13 |
+
st.title('Image OCR and RAG')
|
| 14 |
+
|
| 15 |
+
with st.sidebar:
|
| 16 |
+
st.header("Upload your image")
|
| 17 |
+
uploaded_file = st.file_uploader("Upload an image...", type=["jpg", "jpeg", "png"])
|
| 18 |
+
if uploaded_file is not None:
|
| 19 |
+
st.success("Image uploaded successfully!")
|
| 20 |
+
|
| 21 |
+
model, processor = load_model_and_processor()
|
| 22 |
+
|
| 23 |
+
if uploaded_file is not None:
|
| 24 |
+
image = Image.open(uploaded_file)
|
| 25 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 26 |
+
|
| 27 |
+
try:
|
| 28 |
+
messages = [
|
| 29 |
+
{
|
| 30 |
+
"role": "user",
|
| 31 |
+
"content": [
|
| 32 |
+
{
|
| 33 |
+
"type": "image",
|
| 34 |
+
"image": image,
|
| 35 |
+
},
|
| 36 |
+
{"type": "text", "text": "Extract all the text present in the image and give the output in JSON format"},
|
| 37 |
+
],
|
| 38 |
+
}
|
| 39 |
+
]
|
| 40 |
+
|
| 41 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 42 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 43 |
+
inputs = processor(
|
| 44 |
+
text=[text],
|
| 45 |
+
images=image_inputs,
|
| 46 |
+
videos=video_inputs,
|
| 47 |
+
padding=True,
|
| 48 |
+
return_tensors="pt",
|
| 49 |
+
)
|
| 50 |
+
inputs = inputs.to("cpu")
|
| 51 |
+
|
| 52 |
+
# Generate output using the model
|
| 53 |
+
generated_ids = model.generate(**inputs, max_new_tokens=300)
|
| 54 |
+
generated_ids_trimmed = [
|
| 55 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 56 |
+
]
|
| 57 |
+
output_text = processor.batch_decode(
|
| 58 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
# Display the extracted text in JSON format
|
| 62 |
+
st.subheader("Extracted Text in JSON Format:")
|
| 63 |
+
st.json(output_text[0])
|
| 64 |
+
|
| 65 |
+
except Exception as e:
|
| 66 |
+
st.error(f"An error occurred: {str(e)}")
|
| 67 |
+
|
| 68 |
+
else:
|
| 69 |
+
st.write("Please upload an image from the sidebar")
|