Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
!pip install git+https://github.com/huggingface/transformers
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 5 |
+
from threading import Thread
|
| 6 |
+
|
| 7 |
+
tok = AutoTokenizer.from_pretrained("distilgpt2")
|
| 8 |
+
model = AutoModelForCausalLM.from_pretrained("distilgpt2")
|
| 9 |
+
|
| 10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 11 |
+
n_gpu = 0 if torch.cuda.is_available()==False else torch.cuda.device_count()
|
| 12 |
+
model.to(device)
|
| 13 |
+
|
| 14 |
+
early_stop_pattern = tok.eos_token
|
| 15 |
+
print(f'Early stop pattern = \"{early_stop_pattern}\"')
|
| 16 |
+
|
| 17 |
+
def generate(text = ""):
|
| 18 |
+
streamer = TextIteratorStreamer(tok)
|
| 19 |
+
if len(text) == 0:
|
| 20 |
+
text = " "
|
| 21 |
+
inputs = tok([text], return_tensors="pt")
|
| 22 |
+
generation_kwargs = dict(inputs, streamer=streamer, repetition_penalty=2.0, do_sample=True, top_k=40, top_p=0.97, max_new_tokens=128)
|
| 23 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 24 |
+
thread.start()
|
| 25 |
+
generated_text = ""
|
| 26 |
+
for new_text in streamer:
|
| 27 |
+
yield generated_text + new_text
|
| 28 |
+
#print(new_text, end ="")
|
| 29 |
+
generated_text += new_text
|
| 30 |
+
if early_stop_pattern in generated_text:
|
| 31 |
+
generated_text = generated_text[: generated_text.find(early_stop_pattern) if early_stop_pattern else None]
|
| 32 |
+
streamer.end()
|
| 33 |
+
#print("\n--\n")
|
| 34 |
+
yield generated_text
|
| 35 |
+
return
|
| 36 |
+
|
| 37 |
+
demo = gr.Interface(
|
| 38 |
+
title="TextIteratorStreamer + Gradio demo",
|
| 39 |
+
fn=generate,
|
| 40 |
+
inputs=gr.inputs.Textbox(lines=5, label="Input Text"),
|
| 41 |
+
outputs=gr.outputs.Textbox(label="Generated Text"),
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
demo.queue()
|
| 45 |
+
demo.launch()
|