dfghj
Browse files- app.py +179 -4
- requirements.txt +4 -0
app.py
CHANGED
|
@@ -1,7 +1,182 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
import gradio as gr
|
| 4 |
+
import spaces
|
| 5 |
+
import torch
|
| 6 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification
|
| 7 |
+
from sentence_splitter import SentenceSplitter
|
| 8 |
+
from itertools import product
|
| 9 |
|
| 10 |
+
# Get the Hugging Face token from environment variable
|
| 11 |
+
hf_token = os.getenv('HF_TOKEN')
|
| 12 |
|
| 13 |
+
cuda_available = torch.cuda.is_available()
|
| 14 |
+
device = torch.device("cuda" if cuda_available else "cpu")
|
| 15 |
+
print(f"Using device: {device}")
|
| 16 |
+
|
| 17 |
+
# Initialize paraphraser model and tokenizer
|
| 18 |
+
paraphraser_model_name = "NoaiGPT/777"
|
| 19 |
+
paraphraser_tokenizer = AutoTokenizer.from_pretrained(paraphraser_model_name, use_auth_token=hf_token)
|
| 20 |
+
paraphraser_model = AutoModelForSeq2SeqLM.from_pretrained(paraphraser_model_name, use_auth_token=hf_token).to(device)
|
| 21 |
+
|
| 22 |
+
# Initialize classifier model and tokenizer
|
| 23 |
+
classifier_model_name = "andreas122001/roberta-mixed-detector"
|
| 24 |
+
classifier_tokenizer = AutoTokenizer.from_pretrained(classifier_model_name)
|
| 25 |
+
classifier_model = AutoModelForSequenceClassification.from_pretrained(classifier_model_name).to(device)
|
| 26 |
+
|
| 27 |
+
# Initialize sentence splitter
|
| 28 |
+
splitter = SentenceSplitter(language='en')
|
| 29 |
+
|
| 30 |
+
def classify_text(text):
|
| 31 |
+
inputs = classifier_tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
|
| 32 |
+
with torch.no_grad():
|
| 33 |
+
outputs = classifier_model(**inputs)
|
| 34 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 35 |
+
predicted_class = torch.argmax(probabilities, dim=-1).item()
|
| 36 |
+
main_label = classifier_model.config.id2label[predicted_class]
|
| 37 |
+
main_score = probabilities[0][predicted_class].item()
|
| 38 |
+
return main_label, main_score
|
| 39 |
+
|
| 40 |
+
@spaces.GPU
|
| 41 |
+
def generate_paraphrases(text, setting, output_format):
|
| 42 |
+
sentences = splitter.split(text)
|
| 43 |
+
all_sentence_paraphrases = []
|
| 44 |
+
|
| 45 |
+
if setting == 1:
|
| 46 |
+
num_return_sequences = 5
|
| 47 |
+
repetition_penalty = 1.1
|
| 48 |
+
no_repeat_ngram_size = 2
|
| 49 |
+
temperature = 1.0
|
| 50 |
+
max_length = 128
|
| 51 |
+
elif setting == 2:
|
| 52 |
+
num_return_sequences = 10
|
| 53 |
+
repetition_penalty = 1.2
|
| 54 |
+
no_repeat_ngram_size = 3
|
| 55 |
+
temperature = 1.2
|
| 56 |
+
max_length = 192
|
| 57 |
+
elif setting == 3:
|
| 58 |
+
num_return_sequences = 15
|
| 59 |
+
repetition_penalty = 1.3
|
| 60 |
+
no_repeat_ngram_size = 4
|
| 61 |
+
temperature = 1.4
|
| 62 |
+
max_length = 256
|
| 63 |
+
elif setting == 4:
|
| 64 |
+
num_return_sequences = 20
|
| 65 |
+
repetition_penalty = 1.4
|
| 66 |
+
no_repeat_ngram_size = 5
|
| 67 |
+
temperature = 1.6
|
| 68 |
+
max_length = 320
|
| 69 |
+
else:
|
| 70 |
+
num_return_sequences = 25
|
| 71 |
+
repetition_penalty = 1.5
|
| 72 |
+
no_repeat_ngram_size = 6
|
| 73 |
+
temperature = 1.8
|
| 74 |
+
max_length = 384
|
| 75 |
+
|
| 76 |
+
top_k = 50
|
| 77 |
+
top_p = 0.95
|
| 78 |
+
length_penalty = 1.0
|
| 79 |
+
|
| 80 |
+
formatted_output = "Original text:\n" + text + "\n\n"
|
| 81 |
+
formatted_output += "Paraphrased versions:\n"
|
| 82 |
+
|
| 83 |
+
json_output = {
|
| 84 |
+
"original_text": text,
|
| 85 |
+
"paraphrased_versions": [],
|
| 86 |
+
"combined_versions": [],
|
| 87 |
+
"human_like_versions": []
|
| 88 |
+
}
|
| 89 |
+
|
| 90 |
+
for i, sentence in enumerate(sentences):
|
| 91 |
+
inputs = paraphraser_tokenizer(f'paraphraser: {sentence}', return_tensors="pt", padding="longest", truncation=True, max_length=max_length).to(device)
|
| 92 |
+
|
| 93 |
+
# Generate paraphrases using the specified parameters
|
| 94 |
+
outputs = paraphraser_model.generate(
|
| 95 |
+
inputs.input_ids,
|
| 96 |
+
attention_mask=inputs.attention_mask,
|
| 97 |
+
num_return_sequences=num_return_sequences,
|
| 98 |
+
repetition_penalty=repetition_penalty,
|
| 99 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
| 100 |
+
temperature=temperature,
|
| 101 |
+
max_length=max_length,
|
| 102 |
+
top_k=top_k,
|
| 103 |
+
top_p=top_p,
|
| 104 |
+
do_sample=True,
|
| 105 |
+
early_stopping=False,
|
| 106 |
+
length_penalty=length_penalty
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
paraphrases = paraphraser_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
| 110 |
+
|
| 111 |
+
formatted_output += f"Original sentence {i+1}: {sentence}\n"
|
| 112 |
+
for j, paraphrase in enumerate(paraphrases, 1):
|
| 113 |
+
formatted_output += f" Paraphrase {j}: {paraphrase}\n"
|
| 114 |
+
|
| 115 |
+
json_output["paraphrased_versions"].append({
|
| 116 |
+
f"original_sentence_{i+1}": sentence,
|
| 117 |
+
"paraphrases": paraphrases
|
| 118 |
+
})
|
| 119 |
+
|
| 120 |
+
all_sentence_paraphrases.append(paraphrases)
|
| 121 |
+
formatted_output += "\n"
|
| 122 |
+
|
| 123 |
+
all_combinations = list(product(*all_sentence_paraphrases))
|
| 124 |
+
|
| 125 |
+
formatted_output += "\nCombined paraphrased versions:\n"
|
| 126 |
+
combined_versions = []
|
| 127 |
+
for i, combination in enumerate(all_combinations[:50], 1): # Limit to 50 combinations
|
| 128 |
+
combined_paraphrase = " ".join(combination)
|
| 129 |
+
combined_versions.append(combined_paraphrase)
|
| 130 |
+
|
| 131 |
+
json_output["combined_versions"] = combined_versions
|
| 132 |
+
|
| 133 |
+
# Classify combined versions
|
| 134 |
+
human_versions = []
|
| 135 |
+
for i, version in enumerate(combined_versions, 1):
|
| 136 |
+
label, score = classify_text(version)
|
| 137 |
+
formatted_output += f"Version {i}:\n{version}\n"
|
| 138 |
+
formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
|
| 139 |
+
if label == "human-produced" or (label == "machine-generated" and score < 0.98):
|
| 140 |
+
human_versions.append((version, label, score))
|
| 141 |
+
|
| 142 |
+
formatted_output += "\nHuman-like or Less Confident Machine-generated versions:\n"
|
| 143 |
+
for i, (version, label, score) in enumerate(human_versions, 1):
|
| 144 |
+
formatted_output += f"Version {i}:\n{version}\n"
|
| 145 |
+
formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
|
| 146 |
+
|
| 147 |
+
json_output["human_like_versions"] = [
|
| 148 |
+
{"version": version, "label": label, "confidence_score": score}
|
| 149 |
+
for version, label, score in human_versions
|
| 150 |
+
]
|
| 151 |
+
|
| 152 |
+
# If no human-like versions, include the top 5 least confident machine-generated versions
|
| 153 |
+
if not human_versions:
|
| 154 |
+
human_versions = sorted([(v, l, s) for v, l, s in zip(combined_versions, [classify_text(v)[0] for v in combined_versions], [classify_text(v)[1] for v in combined_versions])], key=lambda x: x[2])[:5]
|
| 155 |
+
formatted_output += "\nNo human-like versions found. Showing top 5 least confident machine-generated versions:\n"
|
| 156 |
+
for i, (version, label, score) in enumerate(human_versions, 1):
|
| 157 |
+
formatted_output += f"Version {i}:\n{version}\n"
|
| 158 |
+
formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
|
| 159 |
+
|
| 160 |
+
if output_format == "text":
|
| 161 |
+
return formatted_output, "\n\n".join([v[0] for v in human_versions])
|
| 162 |
+
else:
|
| 163 |
+
return json.dumps(json_output, indent=2), "\n\n".join([v[0] for v in human_versions])
|
| 164 |
+
|
| 165 |
+
# Define the Gradio interface
|
| 166 |
+
iface = gr.Interface(
|
| 167 |
+
fn=generate_paraphrases,
|
| 168 |
+
inputs=[
|
| 169 |
+
gr.Textbox(lines=5, label="Input Text"),
|
| 170 |
+
gr.Slider(minimum=1, maximum=5, step=1, label="Readability to Human-like Setting"),
|
| 171 |
+
gr.Radio(["text", "json"], label="Output Format")
|
| 172 |
+
],
|
| 173 |
+
outputs=[
|
| 174 |
+
gr.Textbox(lines=20, label="Detailed Paraphrases and Classifications"),
|
| 175 |
+
gr.Textbox(lines=10, label="Human-like or Less Confident Machine-generated Paraphrases")
|
| 176 |
+
],
|
| 177 |
+
title="Advanced Diverse Paraphraser with Human-like Filter",
|
| 178 |
+
description="Enter a text, select a setting from readable to human-like, and choose the output format to generate diverse paraphrased versions. Combined versions are classified, and those detected as human-produced or less confidently machine-generated are presented in the final output."
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
# Launch the interface
|
| 182 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
gradio
|
| 3 |
+
transformers
|
| 4 |
+
sentence-splitter
|