Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,107 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import spaces
|
| 3 |
import gradio as gr
|
| 4 |
+
from diffusers import FluxInpaintPipeline
|
| 5 |
+
import random
|
| 6 |
+
import numpy as np
|
| 7 |
|
| 8 |
+
MARKDOWN = """
|
| 9 |
+
# FLUX.1 Inpainting 🎨
|
| 10 |
+
Shoutout to [Black Forest Labs](https://huggingface.co/black-forest-labs) team for
|
| 11 |
+
creating this amazing model, and a big thanks to [Gothos](https://github.com/Gothos)
|
| 12 |
+
for taking it to the next level by enabling inpainting with the FLUX.
|
| 13 |
+
"""
|
| 14 |
|
| 15 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 16 |
+
DEVICE = "cuda" #if torch.cuda.is_available() else "cpu"
|
| 17 |
+
|
| 18 |
+
pipe = FluxInpaintPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
|
| 19 |
+
|
| 20 |
+
@spaces.GPU()
|
| 21 |
+
def process(input_image_editor, input_text, strength, seed, randomize_seed, num_inference_steps, guidance_scale=3.5, progress=gr.Progress(track_tqdm=True)):
|
| 22 |
+
if not input_text:
|
| 23 |
+
raise gr.Error("Please enter a text prompt.")
|
| 24 |
+
|
| 25 |
+
image = input_image_editor['background']
|
| 26 |
+
|
| 27 |
+
if not image:
|
| 28 |
+
raise gr.Error("Please upload an image.")
|
| 29 |
+
|
| 30 |
+
width, height = image.size
|
| 31 |
+
|
| 32 |
+
if randomize_seed:
|
| 33 |
+
seed = random.randint(0, MAX_SEED)
|
| 34 |
+
|
| 35 |
+
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 36 |
+
|
| 37 |
+
result = pipe(prompt=input_text, image=image, mask_image=mask_image, width=width, height=height,
|
| 38 |
+
strength=strength, num_inference_steps=num_inference_steps, generator=generator,
|
| 39 |
+
guidance_scale=guidance_scale).images[0]
|
| 40 |
+
|
| 41 |
+
return result, mask_image, seed
|
| 42 |
+
|
| 43 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 44 |
+
gr.Markdown(MARKDOWN)
|
| 45 |
+
with gr.Row():
|
| 46 |
+
with gr.Column(scale=1):
|
| 47 |
+
input_image_component = gr.ImageEditor(
|
| 48 |
+
label='Image',
|
| 49 |
+
type='pil',
|
| 50 |
+
sources=["upload", "webcam"],
|
| 51 |
+
image_mode='RGB',
|
| 52 |
+
layers=False,
|
| 53 |
+
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
|
| 54 |
+
input_text_component = gr.Text(
|
| 55 |
+
label="Prompt",
|
| 56 |
+
show_label=False,
|
| 57 |
+
max_lines=1,
|
| 58 |
+
placeholder="Enter your prompt",
|
| 59 |
+
container=False,
|
| 60 |
+
)
|
| 61 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 62 |
+
strength_slider = gr.Slider(
|
| 63 |
+
minimum=0.0,
|
| 64 |
+
maximum=1.0,
|
| 65 |
+
value=0.7,
|
| 66 |
+
step=0.01,
|
| 67 |
+
label="Strength"
|
| 68 |
+
)
|
| 69 |
+
num_inference_steps = gr.Slider(
|
| 70 |
+
minimum=1,
|
| 71 |
+
maximum=100,
|
| 72 |
+
value=30,
|
| 73 |
+
step=1,
|
| 74 |
+
label="Number of inference steps"
|
| 75 |
+
)
|
| 76 |
+
guidance_scale = gr.Slider(
|
| 77 |
+
label="Guidance Scale",
|
| 78 |
+
minimum=1,
|
| 79 |
+
maximum=15,
|
| 80 |
+
step=0.1,
|
| 81 |
+
value=3.5,
|
| 82 |
+
)
|
| 83 |
+
seed_number = gr.Number(
|
| 84 |
+
label="Seed",
|
| 85 |
+
value=42,
|
| 86 |
+
precision=0
|
| 87 |
+
)
|
| 88 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 89 |
+
with gr.Accordion("Upload a mask", open=False):
|
| 90 |
+
uploaded_mask_component = gr.Image(label="Already made mask (black pixels will be preserved, white pixels will be redrawn)", sources=["upload"], type="pil")
|
| 91 |
+
submit_button_component = gr.Button(
|
| 92 |
+
value='Inpaint', variant='primary')
|
| 93 |
+
with gr.Column(scale=1):
|
| 94 |
+
output_image_component = gr.Image(
|
| 95 |
+
type='pil', image_mode='RGB', label='Generated Image')
|
| 96 |
+
output_mask_component = gr.Image(
|
| 97 |
+
type='pil', image_mode='RGB', label='Generated Mask')
|
| 98 |
+
with gr.Accordion("Debug Info", open=False):
|
| 99 |
+
output_seed = gr.Number(label="Used Seed")
|
| 100 |
+
|
| 101 |
+
submit_button_component.click(
|
| 102 |
+
fn=process,
|
| 103 |
+
inputs=[input_image_component, input_text_component, strength_slider, seed_number, randomize_seed, num_inference_steps, guidance_scale],
|
| 104 |
+
outputs=[output_image_component, output_mask_component, output_seed]
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
demo.launch(debug=False, show_error=True)
|