Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from PIL import Image | |
| from transformers import AutoConfig, AutoModelForCausalLM | |
| import torch | |
| # Determine if a GPU is available and set the device accordingly | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| # Load configuration from the base model | |
| config = AutoConfig.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True) | |
| # Load the model using the base model's configuration | |
| model = AutoModelForCausalLM.from_pretrained( | |
| "fauzail/Florence-2-VQA", | |
| config=config, | |
| trust_remote_code=True | |
| ).to(device) | |
| from transformers import AutoProcessor | |
| # Load the processor for the model | |
| processor = AutoProcessor.from_pretrained("fauzail/Florence-2-VQA", trust_remote_code=True) | |
| # Define the prediction function for Gradio | |
| def predict(image, question): | |
| inputs = processor(text=[question], images=[image], return_tensors="pt", padding=True).to(device) | |
| outputs = model.generate(**inputs) | |
| return processor.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # Create the Gradio interface | |
| interface = gr.Interface( | |
| fn=predict, | |
| inputs=["image", "text"], | |
| outputs="text", | |
| title="Florence 2 VQA - Engineering Drawings", | |
| description="Upload an engineering drawing and ask a related question." | |
| ) | |
| # Launch the Gradio interface | |
| interface.launch() | |