|
|
import html
|
|
|
import json
|
|
|
import os
|
|
|
import sys
|
|
|
import threading
|
|
|
import time
|
|
|
|
|
|
import warnings
|
|
|
|
|
|
warnings.filterwarnings("ignore", category=FutureWarning)
|
|
|
warnings.filterwarnings("ignore", category=UserWarning)
|
|
|
|
|
|
import pandas as pd
|
|
|
|
|
|
current_dir = os.path.dirname(os.path.abspath(__file__))
|
|
|
sys.path.append(current_dir)
|
|
|
sys.path.append(os.path.join(current_dir, "indextts"))
|
|
|
|
|
|
import argparse
|
|
|
parser = argparse.ArgumentParser(
|
|
|
description="IndexTTS WebUI",
|
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
|
|
)
|
|
|
parser.add_argument("--verbose", action="store_true", default=False, help="Enable verbose mode")
|
|
|
parser.add_argument("--port", type=int, default=7860, help="Port to run the web UI on")
|
|
|
parser.add_argument("--host", type=str, default="0.0.0.0", help="Host to run the web UI on")
|
|
|
parser.add_argument("--model_dir", type=str, default="./checkpoints", help="Model checkpoints directory")
|
|
|
parser.add_argument("--fp16", action="store_true", default=False, help="Use FP16 for inference if available")
|
|
|
parser.add_argument("--deepspeed", action="store_true", default=False, help="Use DeepSpeed to accelerate if available")
|
|
|
parser.add_argument("--cuda_kernel", action="store_true", default=False, help="Use CUDA kernel for inference if available")
|
|
|
parser.add_argument("--gui_seg_tokens", type=int, default=120, help="GUI: Max tokens per generation segment")
|
|
|
cmd_args = parser.parse_args()
|
|
|
|
|
|
if not os.path.exists(cmd_args.model_dir):
|
|
|
print(f"Model directory {cmd_args.model_dir} does not exist. Please download the model first.")
|
|
|
sys.exit(1)
|
|
|
|
|
|
for file in [
|
|
|
"bpe.model",
|
|
|
"gpt.pth",
|
|
|
"config.yaml",
|
|
|
"s2mel.pth",
|
|
|
"wav2vec2bert_stats.pt"
|
|
|
]:
|
|
|
file_path = os.path.join(cmd_args.model_dir, file)
|
|
|
if not os.path.exists(file_path):
|
|
|
print(f"Required file {file_path} does not exist. Please download it.")
|
|
|
sys.exit(1)
|
|
|
|
|
|
import gradio as gr
|
|
|
from indextts.infer_v2 import IndexTTS2
|
|
|
from tools.i18n.i18n import I18nAuto
|
|
|
|
|
|
i18n = I18nAuto(language="Auto")
|
|
|
MODE = 'local'
|
|
|
tts = IndexTTS2(model_dir=cmd_args.model_dir,
|
|
|
cfg_path=os.path.join(cmd_args.model_dir, "config.yaml"),
|
|
|
use_fp16=cmd_args.fp16,
|
|
|
use_deepspeed=cmd_args.deepspeed,
|
|
|
use_cuda_kernel=cmd_args.cuda_kernel,
|
|
|
)
|
|
|
|
|
|
LANGUAGES = {
|
|
|
"中文": "zh_CN",
|
|
|
"English": "en_US"
|
|
|
}
|
|
|
EMO_CHOICES_ALL = [i18n("与音色参考音频相同"),
|
|
|
i18n("使用情感参考音频"),
|
|
|
i18n("使用情感向量控制"),
|
|
|
i18n("使用情感描述文本控制")]
|
|
|
EMO_CHOICES_OFFICIAL = EMO_CHOICES_ALL[:-1]
|
|
|
|
|
|
os.makedirs("outputs/tasks",exist_ok=True)
|
|
|
os.makedirs("prompts",exist_ok=True)
|
|
|
|
|
|
MAX_LENGTH_TO_USE_SPEED = 70
|
|
|
example_cases = []
|
|
|
with open("examples/cases.jsonl", "r", encoding="utf-8") as f:
|
|
|
for line in f:
|
|
|
line = line.strip()
|
|
|
if not line:
|
|
|
continue
|
|
|
example = json.loads(line)
|
|
|
if example.get("emo_audio",None):
|
|
|
emo_audio_path = os.path.join("examples",example["emo_audio"])
|
|
|
else:
|
|
|
emo_audio_path = None
|
|
|
|
|
|
example_cases.append([os.path.join("examples", example.get("prompt_audio", "sample_prompt.wav")),
|
|
|
EMO_CHOICES_ALL[example.get("emo_mode",0)],
|
|
|
example.get("text"),
|
|
|
emo_audio_path,
|
|
|
example.get("emo_weight",1.0),
|
|
|
example.get("emo_text",""),
|
|
|
example.get("emo_vec_1",0),
|
|
|
example.get("emo_vec_2",0),
|
|
|
example.get("emo_vec_3",0),
|
|
|
example.get("emo_vec_4",0),
|
|
|
example.get("emo_vec_5",0),
|
|
|
example.get("emo_vec_6",0),
|
|
|
example.get("emo_vec_7",0),
|
|
|
example.get("emo_vec_8",0),
|
|
|
])
|
|
|
|
|
|
def get_example_cases(include_experimental = False):
|
|
|
if include_experimental:
|
|
|
return example_cases
|
|
|
|
|
|
|
|
|
return [x for x in example_cases if x[1] != EMO_CHOICES_ALL[3]]
|
|
|
|
|
|
def gen_single(emo_control_method,prompt, text,
|
|
|
emo_ref_path, emo_weight,
|
|
|
vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8,
|
|
|
emo_text,emo_random,
|
|
|
max_text_tokens_per_segment=120,
|
|
|
*args, progress=gr.Progress()):
|
|
|
output_path = None
|
|
|
if not output_path:
|
|
|
output_path = os.path.join("outputs", f"spk_{int(time.time())}.wav")
|
|
|
|
|
|
tts.gr_progress = progress
|
|
|
do_sample, top_p, top_k, temperature, \
|
|
|
length_penalty, num_beams, repetition_penalty, max_mel_tokens = args
|
|
|
kwargs = {
|
|
|
"do_sample": bool(do_sample),
|
|
|
"top_p": float(top_p),
|
|
|
"top_k": int(top_k) if int(top_k) > 0 else None,
|
|
|
"temperature": float(temperature),
|
|
|
"length_penalty": float(length_penalty),
|
|
|
"num_beams": num_beams,
|
|
|
"repetition_penalty": float(repetition_penalty),
|
|
|
"max_mel_tokens": int(max_mel_tokens),
|
|
|
|
|
|
|
|
|
}
|
|
|
if type(emo_control_method) is not int:
|
|
|
emo_control_method = emo_control_method.value
|
|
|
if emo_control_method == 0:
|
|
|
emo_ref_path = None
|
|
|
if emo_control_method == 1:
|
|
|
pass
|
|
|
if emo_control_method == 2:
|
|
|
vec = [vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8]
|
|
|
vec = tts.normalize_emo_vec(vec, apply_bias=True)
|
|
|
else:
|
|
|
|
|
|
vec = None
|
|
|
|
|
|
if emo_text == "":
|
|
|
|
|
|
emo_text = None
|
|
|
|
|
|
print(f"Emo control mode:{emo_control_method},weight:{emo_weight},vec:{vec}")
|
|
|
output = tts.infer(spk_audio_prompt=prompt, text=text,
|
|
|
output_path=output_path,
|
|
|
emo_audio_prompt=emo_ref_path, emo_alpha=emo_weight,
|
|
|
emo_vector=vec,
|
|
|
use_emo_text=(emo_control_method==3), emo_text=emo_text,use_random=emo_random,
|
|
|
verbose=cmd_args.verbose,
|
|
|
max_text_tokens_per_segment=int(max_text_tokens_per_segment),
|
|
|
**kwargs)
|
|
|
return gr.update(value=output,visible=True)
|
|
|
|
|
|
def update_prompt_audio():
|
|
|
update_button = gr.update(interactive=True)
|
|
|
return update_button
|
|
|
|
|
|
def create_warning_message(warning_text):
|
|
|
return gr.HTML(f"<div style=\"padding: 0.5em 0.8em; border-radius: 0.5em; background: #ffa87d; color: #000; font-weight: bold\">{html.escape(warning_text)}</div>")
|
|
|
|
|
|
def create_experimental_warning_message():
|
|
|
return create_warning_message(i18n('提示:此功能为实验版,结果尚不稳定,我们正在持续优化中。'))
|
|
|
|
|
|
with gr.Blocks(title="IndexTTS Demo") as demo:
|
|
|
mutex = threading.Lock()
|
|
|
gr.HTML('''
|
|
|
<h2><center>IndexTTS2: A Breakthrough in Emotionally Expressive and Duration-Controlled Auto-Regressive Zero-Shot Text-to-Speech</h2>
|
|
|
<p align="center">
|
|
|
<a href='https://arxiv.org/abs/2506.21619'><img src='https://img.shields.io/badge/ArXiv-2506.21619-red'></a>
|
|
|
</p>
|
|
|
''')
|
|
|
|
|
|
with gr.Tab(i18n("音频生成")):
|
|
|
with gr.Row():
|
|
|
os.makedirs("prompts",exist_ok=True)
|
|
|
prompt_audio = gr.Audio(label=i18n("音色参考音频"),key="prompt_audio",
|
|
|
sources=["upload","microphone"],type="filepath")
|
|
|
prompt_list = os.listdir("prompts")
|
|
|
default = ''
|
|
|
if prompt_list:
|
|
|
default = prompt_list[0]
|
|
|
with gr.Column():
|
|
|
input_text_single = gr.TextArea(label=i18n("文本"),key="input_text_single", placeholder=i18n("请输入目标文本"), info=f"{i18n('当前模型版本')}{tts.model_version or '1.0'}")
|
|
|
gen_button = gr.Button(i18n("生成语音"), key="gen_button",interactive=True)
|
|
|
output_audio = gr.Audio(label=i18n("生成结果"), visible=True,key="output_audio")
|
|
|
|
|
|
experimental_checkbox = gr.Checkbox(label=i18n("显示实验功能"), value=False)
|
|
|
|
|
|
with gr.Accordion(i18n("功能设置")):
|
|
|
|
|
|
with gr.Row():
|
|
|
emo_control_method = gr.Radio(
|
|
|
choices=EMO_CHOICES_OFFICIAL,
|
|
|
type="index",
|
|
|
value=EMO_CHOICES_OFFICIAL[0],label=i18n("情感控制方式"))
|
|
|
|
|
|
|
|
|
|
|
|
emo_control_method_all = gr.Radio(
|
|
|
choices=EMO_CHOICES_ALL,
|
|
|
type="index",
|
|
|
value=EMO_CHOICES_ALL[0], label=i18n("情感控制方式"),
|
|
|
visible=False)
|
|
|
|
|
|
with gr.Group(visible=False) as emotion_reference_group:
|
|
|
with gr.Row():
|
|
|
emo_upload = gr.Audio(label=i18n("上传情感参考音频"), type="filepath")
|
|
|
|
|
|
|
|
|
with gr.Row(visible=False) as emotion_randomize_group:
|
|
|
emo_random = gr.Checkbox(label=i18n("情感随机采样"), value=False)
|
|
|
|
|
|
|
|
|
with gr.Group(visible=False) as emotion_vector_group:
|
|
|
with gr.Row():
|
|
|
with gr.Column():
|
|
|
vec1 = gr.Slider(label=i18n("喜"), minimum=0.0, maximum=1.0, value=0.0, step=0.05)
|
|
|
vec2 = gr.Slider(label=i18n("怒"), minimum=0.0, maximum=1.0, value=0.0, step=0.05)
|
|
|
vec3 = gr.Slider(label=i18n("哀"), minimum=0.0, maximum=1.0, value=0.0, step=0.05)
|
|
|
vec4 = gr.Slider(label=i18n("惧"), minimum=0.0, maximum=1.0, value=0.0, step=0.05)
|
|
|
with gr.Column():
|
|
|
vec5 = gr.Slider(label=i18n("厌恶"), minimum=0.0, maximum=1.0, value=0.0, step=0.05)
|
|
|
vec6 = gr.Slider(label=i18n("低落"), minimum=0.0, maximum=1.0, value=0.0, step=0.05)
|
|
|
vec7 = gr.Slider(label=i18n("惊喜"), minimum=0.0, maximum=1.0, value=0.0, step=0.05)
|
|
|
vec8 = gr.Slider(label=i18n("平静"), minimum=0.0, maximum=1.0, value=0.0, step=0.05)
|
|
|
|
|
|
with gr.Group(visible=False) as emo_text_group:
|
|
|
create_experimental_warning_message()
|
|
|
with gr.Row():
|
|
|
emo_text = gr.Textbox(label=i18n("情感描述文本"),
|
|
|
placeholder=i18n("请输入情绪描述(或留空以自动使用目标文本作为情绪描述)"),
|
|
|
value="",
|
|
|
info=i18n("例如:委屈巴巴、危险在悄悄逼近"))
|
|
|
|
|
|
with gr.Row(visible=False) as emo_weight_group:
|
|
|
emo_weight = gr.Slider(label=i18n("情感权重"), minimum=0.0, maximum=1.0, value=0.65, step=0.01)
|
|
|
|
|
|
with gr.Accordion(i18n("高级生成参数设置"), open=False, visible=True) as advanced_settings_group:
|
|
|
with gr.Row():
|
|
|
with gr.Column(scale=1):
|
|
|
gr.Markdown(f"**{i18n('GPT2 采样设置')}** _{i18n('参数会影响音频多样性和生成速度详见')} [Generation strategies](https://huggingface.co/docs/transformers/main/en/generation_strategies)._")
|
|
|
with gr.Row():
|
|
|
do_sample = gr.Checkbox(label="do_sample", value=True, info=i18n("是否进行采样"))
|
|
|
temperature = gr.Slider(label="temperature", minimum=0.1, maximum=2.0, value=0.8, step=0.1)
|
|
|
with gr.Row():
|
|
|
top_p = gr.Slider(label="top_p", minimum=0.0, maximum=1.0, value=0.8, step=0.01)
|
|
|
top_k = gr.Slider(label="top_k", minimum=0, maximum=100, value=30, step=1)
|
|
|
num_beams = gr.Slider(label="num_beams", value=3, minimum=1, maximum=10, step=1)
|
|
|
with gr.Row():
|
|
|
repetition_penalty = gr.Number(label="repetition_penalty", precision=None, value=10.0, minimum=0.1, maximum=20.0, step=0.1)
|
|
|
length_penalty = gr.Number(label="length_penalty", precision=None, value=0.0, minimum=-2.0, maximum=2.0, step=0.1)
|
|
|
max_mel_tokens = gr.Slider(label="max_mel_tokens", value=1500, minimum=50, maximum=tts.cfg.gpt.max_mel_tokens, step=10, info=i18n("生成Token最大数量,过小导致音频被截断"), key="max_mel_tokens")
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Column(scale=2):
|
|
|
gr.Markdown(f'**{i18n("分句设置")}** _{i18n("参数会影响音频质量和生成速度")}_')
|
|
|
with gr.Row():
|
|
|
initial_value = max(20, min(tts.cfg.gpt.max_text_tokens, cmd_args.gui_seg_tokens))
|
|
|
max_text_tokens_per_segment = gr.Slider(
|
|
|
label=i18n("分句最大Token数"), value=initial_value, minimum=20, maximum=tts.cfg.gpt.max_text_tokens, step=2, key="max_text_tokens_per_segment",
|
|
|
info=i18n("建议80~200之间,值越大,分句越长;值越小,分句越碎;过小过大都可能导致音频质量不高"),
|
|
|
)
|
|
|
with gr.Accordion(i18n("预览分句结果"), open=True) as segments_settings:
|
|
|
segments_preview = gr.Dataframe(
|
|
|
headers=[i18n("序号"), i18n("分句内容"), i18n("Token数")],
|
|
|
key="segments_preview",
|
|
|
wrap=True,
|
|
|
)
|
|
|
advanced_params = [
|
|
|
do_sample, top_p, top_k, temperature,
|
|
|
length_penalty, num_beams, repetition_penalty, max_mel_tokens,
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
example_table = gr.Dataset(label="Examples",
|
|
|
samples_per_page=20,
|
|
|
samples=get_example_cases(include_experimental=False),
|
|
|
type="values",
|
|
|
|
|
|
|
|
|
|
|
|
components=[prompt_audio,
|
|
|
emo_control_method_all,
|
|
|
input_text_single,
|
|
|
emo_upload,
|
|
|
emo_weight,
|
|
|
emo_text,
|
|
|
vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8]
|
|
|
)
|
|
|
|
|
|
def on_example_click(example):
|
|
|
print(f"Example clicked: ({len(example)} values) = {example!r}")
|
|
|
return (
|
|
|
gr.update(value=example[0]),
|
|
|
gr.update(value=example[1]),
|
|
|
gr.update(value=example[2]),
|
|
|
gr.update(value=example[3]),
|
|
|
gr.update(value=example[4]),
|
|
|
gr.update(value=example[5]),
|
|
|
gr.update(value=example[6]),
|
|
|
gr.update(value=example[7]),
|
|
|
gr.update(value=example[8]),
|
|
|
gr.update(value=example[9]),
|
|
|
gr.update(value=example[10]),
|
|
|
gr.update(value=example[11]),
|
|
|
gr.update(value=example[12]),
|
|
|
gr.update(value=example[13]),
|
|
|
)
|
|
|
|
|
|
|
|
|
example_table.click(on_example_click,
|
|
|
inputs=[example_table],
|
|
|
outputs=[prompt_audio,
|
|
|
emo_control_method,
|
|
|
input_text_single,
|
|
|
emo_upload,
|
|
|
emo_weight,
|
|
|
emo_text,
|
|
|
vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8]
|
|
|
)
|
|
|
|
|
|
def on_input_text_change(text, max_text_tokens_per_segment):
|
|
|
if text and len(text) > 0:
|
|
|
text_tokens_list = tts.tokenizer.tokenize(text)
|
|
|
|
|
|
segments = tts.tokenizer.split_segments(text_tokens_list, max_text_tokens_per_segment=int(max_text_tokens_per_segment))
|
|
|
data = []
|
|
|
for i, s in enumerate(segments):
|
|
|
segment_str = ''.join(s)
|
|
|
tokens_count = len(s)
|
|
|
data.append([i, segment_str, tokens_count])
|
|
|
return {
|
|
|
segments_preview: gr.update(value=data, visible=True, type="array"),
|
|
|
}
|
|
|
else:
|
|
|
df = pd.DataFrame([], columns=[i18n("序号"), i18n("分句内容"), i18n("Token数")])
|
|
|
return {
|
|
|
segments_preview: gr.update(value=df),
|
|
|
}
|
|
|
|
|
|
def on_method_change(emo_control_method):
|
|
|
if emo_control_method == 1:
|
|
|
return (gr.update(visible=True),
|
|
|
gr.update(visible=False),
|
|
|
gr.update(visible=False),
|
|
|
gr.update(visible=False),
|
|
|
gr.update(visible=True)
|
|
|
)
|
|
|
elif emo_control_method == 2:
|
|
|
return (gr.update(visible=False),
|
|
|
gr.update(visible=True),
|
|
|
gr.update(visible=True),
|
|
|
gr.update(visible=False),
|
|
|
gr.update(visible=True)
|
|
|
)
|
|
|
elif emo_control_method == 3:
|
|
|
return (gr.update(visible=False),
|
|
|
gr.update(visible=True),
|
|
|
gr.update(visible=False),
|
|
|
gr.update(visible=True),
|
|
|
gr.update(visible=True)
|
|
|
)
|
|
|
else:
|
|
|
return (gr.update(visible=False),
|
|
|
gr.update(visible=False),
|
|
|
gr.update(visible=False),
|
|
|
gr.update(visible=False),
|
|
|
gr.update(visible=False)
|
|
|
)
|
|
|
|
|
|
emo_control_method.change(on_method_change,
|
|
|
inputs=[emo_control_method],
|
|
|
outputs=[emotion_reference_group,
|
|
|
emotion_randomize_group,
|
|
|
emotion_vector_group,
|
|
|
emo_text_group,
|
|
|
emo_weight_group]
|
|
|
)
|
|
|
|
|
|
def on_experimental_change(is_experimental, current_mode_index):
|
|
|
|
|
|
new_choices = EMO_CHOICES_ALL if is_experimental else EMO_CHOICES_OFFICIAL
|
|
|
|
|
|
|
|
|
new_index = current_mode_index if current_mode_index < len(new_choices) else 0
|
|
|
|
|
|
return (
|
|
|
gr.update(choices=new_choices, value=new_choices[new_index]),
|
|
|
gr.update(samples=get_example_cases(include_experimental=is_experimental)),
|
|
|
)
|
|
|
|
|
|
experimental_checkbox.change(
|
|
|
on_experimental_change,
|
|
|
inputs=[experimental_checkbox, emo_control_method],
|
|
|
outputs=[emo_control_method, example_table]
|
|
|
)
|
|
|
|
|
|
input_text_single.change(
|
|
|
on_input_text_change,
|
|
|
inputs=[input_text_single, max_text_tokens_per_segment],
|
|
|
outputs=[segments_preview]
|
|
|
)
|
|
|
|
|
|
max_text_tokens_per_segment.change(
|
|
|
on_input_text_change,
|
|
|
inputs=[input_text_single, max_text_tokens_per_segment],
|
|
|
outputs=[segments_preview]
|
|
|
)
|
|
|
|
|
|
prompt_audio.upload(update_prompt_audio,
|
|
|
inputs=[],
|
|
|
outputs=[gen_button])
|
|
|
|
|
|
gen_button.click(gen_single,
|
|
|
inputs=[emo_control_method,prompt_audio, input_text_single, emo_upload, emo_weight,
|
|
|
vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8,
|
|
|
emo_text,emo_random,
|
|
|
max_text_tokens_per_segment,
|
|
|
*advanced_params,
|
|
|
],
|
|
|
outputs=[output_audio])
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
demo.queue(20)
|
|
|
demo.launch(server_name=cmd_args.host, server_port=cmd_args.port)
|
|
|
|