Spaces:
Running
Running
fix
Browse files
app.py
CHANGED
|
@@ -1,165 +1,165 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from nltk import pos_tag, ne_chunk
|
| 3 |
-
from nltk.tokenize import word_tokenize, sent_tokenize
|
| 4 |
-
from nltk.tokenize.treebank import TreebankWordDetokenizer
|
| 5 |
-
from nltk.corpus import wordnet, brown
|
| 6 |
-
from spellchecker import SpellChecker
|
| 7 |
-
import re
|
| 8 |
-
import nltk
|
| 9 |
|
| 10 |
-
# Preload resources
|
| 11 |
-
detokenizer = TreebankWordDetokenizer()
|
| 12 |
-
global_freq_dist = nltk.FreqDist(w.lower() for w in brown.words())
|
| 13 |
|
| 14 |
-
def extract_proper_nouns(text):
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
|
| 30 |
-
def protect_proper_nouns(text, dynamic_entities):
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
|
| 45 |
-
def replace_words_with_synonyms(tokens_with_protection, pos_tags):
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
|
| 86 |
-
def restructure_sentences(text):
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
|
| 101 |
-
def contextual_spell_check(text):
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
|
| 122 |
-
def finalize_formatting(text):
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
|
| 133 |
-
def humanize_text(text):
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
|
| 145 |
-
def process_text(input_text):
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
|
| 156 |
-
# Gradio Interface
|
| 157 |
-
iface = gr.Interface(
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
)
|
| 164 |
|
| 165 |
-
iface.launch()
|
|
|
|
| 1 |
+
# import gradio as gr
|
| 2 |
+
# from nltk import pos_tag, ne_chunk
|
| 3 |
+
# from nltk.tokenize import word_tokenize, sent_tokenize
|
| 4 |
+
# from nltk.tokenize.treebank import TreebankWordDetokenizer
|
| 5 |
+
# from nltk.corpus import wordnet, brown
|
| 6 |
+
# from spellchecker import SpellChecker
|
| 7 |
+
# import re
|
| 8 |
+
# import nltk
|
| 9 |
|
| 10 |
+
# # Preload resources
|
| 11 |
+
# detokenizer = TreebankWordDetokenizer()
|
| 12 |
+
# global_freq_dist = nltk.FreqDist(w.lower() for w in brown.words())
|
| 13 |
|
| 14 |
+
# def extract_proper_nouns(text):
|
| 15 |
+
# """
|
| 16 |
+
# Extracts proper nouns such as PERSON, ORGANIZATION, and GPE from the given text.
|
| 17 |
+
# Returns a set of detected proper nouns in lowercase.
|
| 18 |
+
# """
|
| 19 |
+
# tokens = word_tokenize(text)
|
| 20 |
+
# tagged = pos_tag(tokens)
|
| 21 |
+
# chunks = ne_chunk(tagged)
|
| 22 |
+
# proper_nouns = set()
|
| 23 |
|
| 24 |
+
# for chunk in chunks:
|
| 25 |
+
# if hasattr(chunk, 'label') and chunk.label() in ('PERSON', 'ORGANIZATION', 'GPE'):
|
| 26 |
+
# entity = " ".join(c[0] for c in chunk)
|
| 27 |
+
# proper_nouns.add(entity.lower())
|
| 28 |
+
# return proper_nouns
|
| 29 |
|
| 30 |
+
# def protect_proper_nouns(text, dynamic_entities):
|
| 31 |
+
# """
|
| 32 |
+
# Identifies and marks proper nouns to prevent them from being altered.
|
| 33 |
+
# Returns a list of tuples (word, is_protected).
|
| 34 |
+
# """
|
| 35 |
+
# tokens = word_tokenize(text)
|
| 36 |
+
# protected = []
|
| 37 |
+
# for token in tokens:
|
| 38 |
+
# lower_token = token.lower()
|
| 39 |
+
# if any(lower_token in entity for entity in dynamic_entities):
|
| 40 |
+
# protected.append((token, True))
|
| 41 |
+
# else:
|
| 42 |
+
# protected.append((token, False))
|
| 43 |
+
# return protected
|
| 44 |
|
| 45 |
+
# def replace_words_with_synonyms(tokens_with_protection, pos_tags):
|
| 46 |
+
# """
|
| 47 |
+
# Replaces words with synonyms while maintaining readability and ensuring proper nouns remain unchanged.
|
| 48 |
+
# """
|
| 49 |
+
# new_tokens = []
|
| 50 |
+
# for (token, protected), (_, tag) in zip(tokens_with_protection, pos_tags):
|
| 51 |
+
# if protected or not token.isalpha():
|
| 52 |
+
# new_tokens.append(token)
|
| 53 |
+
# continue
|
| 54 |
|
| 55 |
+
# pos = None
|
| 56 |
+
# if tag.startswith('JJ'):
|
| 57 |
+
# pos = wordnet.ADJ
|
| 58 |
+
# elif tag.startswith('RB'):
|
| 59 |
+
# pos = wordnet.ADV
|
| 60 |
+
# elif tag.startswith('NN'):
|
| 61 |
+
# pos = wordnet.NOUN
|
| 62 |
+
# elif tag.startswith('VB'):
|
| 63 |
+
# pos = wordnet.VERB
|
| 64 |
|
| 65 |
+
# if pos:
|
| 66 |
+
# candidates = []
|
| 67 |
+
# for syn in wordnet.synsets(token, pos=pos):
|
| 68 |
+
# for lemma in syn.lemmas():
|
| 69 |
+
# candidate = lemma.name().replace('_', ' ')
|
| 70 |
+
# if candidate.lower() == token.lower() or ' ' in candidate:
|
| 71 |
+
# continue
|
| 72 |
+
# if len(candidate) > len(token) * 1.2:
|
| 73 |
+
# continue
|
| 74 |
+
# candidates.append(candidate)
|
| 75 |
+
# if candidates:
|
| 76 |
+
# best_candidate = max(candidates,
|
| 77 |
+
# key=lambda x: global_freq_dist[x.lower()],
|
| 78 |
+
# default=token)
|
| 79 |
+
# new_tokens.append(best_candidate)
|
| 80 |
+
# else:
|
| 81 |
+
# new_tokens.append(token)
|
| 82 |
+
# else:
|
| 83 |
+
# new_tokens.append(token)
|
| 84 |
+
# return new_tokens
|
| 85 |
|
| 86 |
+
# def restructure_sentences(text):
|
| 87 |
+
# """
|
| 88 |
+
# Splits long sentences for better readability.
|
| 89 |
+
# Uses punctuation-based splitting if necessary.
|
| 90 |
+
# """
|
| 91 |
+
# sentences = sent_tokenize(text)
|
| 92 |
+
# restructured = []
|
| 93 |
+
# for sent in sentences:
|
| 94 |
+
# if len(sent.split()) > 25:
|
| 95 |
+
# parts = re.split(r'[,;]', sent)
|
| 96 |
+
# if len(parts) > 1:
|
| 97 |
+
# sent = parts[0] + '. ' + ' '.join(parts[1:])
|
| 98 |
+
# restructured.append(sent)
|
| 99 |
+
# return ' '.join(restructured)
|
| 100 |
|
| 101 |
+
# def contextual_spell_check(text):
|
| 102 |
+
# """
|
| 103 |
+
# Performs spell checking while ensuring proper nouns remain unchanged.
|
| 104 |
+
# """
|
| 105 |
+
# protected = protect_proper_nouns(text, extract_proper_nouns(text))
|
| 106 |
+
# spell = SpellChecker()
|
| 107 |
+
# corrected = []
|
| 108 |
+
# for token, protected_flag in protected:
|
| 109 |
+
# if protected_flag or not token.isalpha():
|
| 110 |
+
# corrected.append(token)
|
| 111 |
+
# continue
|
| 112 |
+
# correction = spell.correction(token)
|
| 113 |
+
# if correction:
|
| 114 |
+
# if token[0].isupper():
|
| 115 |
+
# corrected.append(correction.capitalize())
|
| 116 |
+
# else:
|
| 117 |
+
# corrected.append(correction.lower())
|
| 118 |
+
# else:
|
| 119 |
+
# corrected.append(token)
|
| 120 |
+
# return detokenizer.detokenize(corrected)
|
| 121 |
|
| 122 |
+
# def finalize_formatting(text):
|
| 123 |
+
# """
|
| 124 |
+
# Cleans up text formatting including spaces before punctuation, quote styles, and em dashes.
|
| 125 |
+
# """
|
| 126 |
+
# text = re.sub(r'\s+([.,!?;:])', r'\1', text)
|
| 127 |
+
# text = re.sub(r'([(])\s+', r'\1', text)
|
| 128 |
+
# text = re.sub(r'\s+([)])', r'\1', text)
|
| 129 |
+
# text = re.sub(r'\"(.*?)\"', r'“\1”', text)
|
| 130 |
+
# text = re.sub(r' -- ', r' — ', text)
|
| 131 |
+
# return text.strip()
|
| 132 |
|
| 133 |
+
# def humanize_text(text):
|
| 134 |
+
# """
|
| 135 |
+
# Applies synonym replacement, sentence restructuring, and other enhancements to make text more natural.
|
| 136 |
+
# """
|
| 137 |
+
# dynamic_entities = extract_proper_nouns(text)
|
| 138 |
+
# protected_tokens = protect_proper_nouns(text, dynamic_entities)
|
| 139 |
+
# tokens = [t[0] for t in protected_tokens]
|
| 140 |
+
# tags = pos_tag(tokens)
|
| 141 |
+
# new_tokens = replace_words_with_synonyms(protected_tokens, tags)
|
| 142 |
+
# text = detokenizer.detokenize(new_tokens)
|
| 143 |
+
# return restructure_sentences(text)
|
| 144 |
|
| 145 |
+
# def process_text(input_text):
|
| 146 |
+
# """
|
| 147 |
+
# Processes input text to enhance readability by applying all transformations sequentially.
|
| 148 |
+
# """
|
| 149 |
+
# if input_text:
|
| 150 |
+
# humanized = humanize_text(input_text)
|
| 151 |
+
# spell_checked = contextual_spell_check(humanized)
|
| 152 |
+
# final_output = finalize_formatting(spell_checked)
|
| 153 |
+
# return final_output
|
| 154 |
+
# return ""
|
| 155 |
|
| 156 |
+
# # Gradio Interface
|
| 157 |
+
# iface = gr.Interface(
|
| 158 |
+
# fn=process_text,
|
| 159 |
+
# inputs=gr.Textbox(lines=5, placeholder="Enter text here..."),
|
| 160 |
+
# outputs=gr.Textbox(lines=5),
|
| 161 |
+
# title="AI to Humanized Text Converter",
|
| 162 |
+
# description="Enter text and get a more humanized, readable output.",
|
| 163 |
+
# )
|
| 164 |
|
| 165 |
+
# iface.launch()
|