--- title: Fistal AI emoji: 🚀 colorFrom: indigo colorTo: pink sdk: gradio sdk_version: 6.0.1 app_file: app.py pinned: false license: apache-2.0 short_description: Finetuning Studio python_version: 3.11 tags: - mcp-in-action-track-enterprise - mcp-in-action-track-consumer --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference

🚀 Fistal AI - Autonomous Fine-Tuning Platform

[![HF Space](https://img.shields.io/badge/%F0%9F%A4%97%20-%20HF%20Space%20-%20orange)](https://huggingface.co/spaces/your-username/fistal-ai) ![Python](https://img.shields.io/badge/Python-3.11-blue?logo=python) ![Modal](https://img.shields.io/badge/Modal-Enabled-green) ![Gemini](https://img.shields.io/badge/%E2%9C%A8%20-%20Gemini%20API%20-%20teal) ![Unsloth](https://img.shields.io/badge/Unsloth-4bit-purple) ![MCP](https://img.shields.io/badge/MCP-Enabled-pink) ![Gradio](https://img.shields.io/badge/%F0%9F%94%B6%20-%20Gradio%20-%20%23fc7280) ![Agentic AI](https://img.shields.io/badge/%F0%9F%A4%96%20-%20Agentic%20AI%20-%20%23472731) ![1B-3B Models](http14903s://img.shields.io/badge/%F0%9F%A7%AE%20-%201B%2F2B%2F3B%20models%20-%20teal) ![Evaluation Report](https://img.shields.io/badge/%F0%9F%93%9D%20-%20Evaluation%20Report%20-%20purple) **Agentic AI that seamlessly finetunes LLM's with Unsloth and Modal** [🎮 Try Demo](https://drive.google.com/file/d/1-Uf2-k-gJsIozg-YX0oo_qWjeS31sq98/view?usp=sharing) • [📱 LinkedIn Post](https://www.linkedin.com/posts/mahreen-fathima-anis-5238ba36b_fistal-ai-a-hugging-face-space-by-mcp-1st-birthday-activity-7400939406448074752-SKAV?utm_source=share&utm_medium=member_desktop&rcm=ACoAAFvK0WsBW7LU9mIHS4nf2zGkEQ85Wi322Sg)
--- ## 🎯 What is Fistal AI? Fistal AI is an **autonomous fine-tuning platform** that transforms the complex process of training custom language models into a single-click experience. Simply specify your topic, and Fistal handles everything: - 🤖 **Synthetic Dataset Generation** - Creates high-quality training data using LLMs - 🔄 **Automatic Data Formatting** - Converts to chat/instruction format - 🏋️ **Serverless Training** - Fine-tunes models on Modal's GPU infrastructure - 📊 **LLM-as-Judge Evaluation** - Validates model performance - 🤗 **Hugging Face Deployment** - Publishes your model automatically **No ML expertise required. No infrastructure setup. Just results.** --- ## ✨ Features ### 🎨 **Intuitive Interface** - Clean Gradio-based web UI hosted on Hugging Face Spaces - Real-time training progress with educational insights - Automatic Hugging Face integration with one-click model access - Direct model upload in native HF format (ready to use immediately) ### ⚡ **Blazing Fast Training** - **3x faster dataset generation** with parallel API calls (Gemini) - **2x faster training** with Unsloth optimization and Modal GPU's - **70% less memory** usage via 4-bit quantization - Training completes in **10-20 minutes** for 500 samples ### 🧠 **Smart Defaults** - 4-bit quantization for optimal quality/size balance - LoRA fine-tuning (updates only 0.1% of parameters) - Supports 1B-3B parameter models (Qwen, Llama, Gemma, Phi) - Automatic hyperparameter optimization - Native HF format upload (no conversion needed) ### 🔬 **Quality Assurance** - LLM-as-judge evaluation system - Coherence, relevance, and accuracy testing - Comprehensive evaluation reports - Real-time monitoring of training metrics ### 🔌 **MCP-Powered Workflow** - Agentic orchestration using Model Context Protocol (MCP) - 4 specialized MCP tools for end-to-end automation - Intelligent decision-making throughout the pipeline - Seamless tool coordination for optimal results --- ## ✨ Sponsors: - **Modal Labs** : Seamless T4 GPU access - **Gemini API** : Handles majority of LLM tasks including data generation and agentic control --- ## Watch Demo: *Note: The demo runs only 5 samples for speed, but you can scale it to 2000+ in real use.* [**Demo Fistal**](https://drive.google.com/file/d/1wXxGDKUfQXmntW3ldhy-rov8Kjs_K3dj/view?usp=sharing) --- ### **How Fistal AI Works Behind the Scenes** * Fistal AI runs on an **agentic workflow** powered by LangGraph. * Instead of a fixed script, an **AI agent** decides what step to run next. * All the actual work (dataset generation, formatting, training, evaluation) is done by **MCP tools**. * The agent just thinks → MCP tools do the work → agent continues automatically. --- ### **The MCP Server** * Hosts four tools: * `generate_json_data` → creates synthetic training data * `format_json` → converts it to ChatML format * `finetune_model` → runs Unsloth training on Modal * `llm_as_judge` → evaluates the trained model * Each tool is isolated and safe. * Returns clean, structured results that the agent uses. --- ### **Pipeline Flow (Step-by-Step)** * **1. Dataset Generation** Agent calls the tool → LLMs generate 20–500 examples in parallel. * **2. Dataset Formatting** Agent calls next tool → raw dataset becomes ChatML/instruction format. * **3. Fine-Tuning** Agent launches training on Modal using Unsloth + 4-bit QLoRA. * **4. Evaluation** Agent runs LLM-as-judge → gets coherence/relevance/accuracy/ROUGE/BLEU scores with evaluate library. * **5. Final Output** The model and adapters are automatically uploaded to the user's(mahreenfathima) Hugging Face account (based on the HF token provided). Automatic Evaluation Report generated. --- #### 🛠️ **The 4 MCP Tools** 1. **`generate_json_data`** - **Purpose**: Synthetic dataset generation - **Input**: Topic, sample count, task type - **Process**: Parallel API calls to Gemini + Groq with intelligent prompt engineering - **Output**: JSON dataset with diverse, high-quality examples - **MCP Role**: Agent invokes this tool first, receives confirmation, then proceeds 2. **`format_json`** - **Purpose**: Convert raw data to training(ChatML) format - **Input**: Raw JSON dataset path - **Process**: Transforms to chat/instruction format optimized for fine-tuning - **Output**: Formatted dataset ready for training - **MCP Role**: Agent receives dataset path from previous tool, formats it automatically 3. **`finetune_model`** - **Purpose**: Execute serverless training - **Input**: Formatted dataset, model name, hyperparameters - **Process**: Deploys training job to Modal with Unsloth optimization - **Output**: Fine-tuned model weights + training metrics - **MCP Role**: Agent monitors training progress, handles failures, manages GPU resources - **Internal Functions** (executed within Modal): - `train_with_modal`: Runs finetuning process with Unsloth and saves model in Volume - `upload_to_hf_from_volume`: Pushes the trained model weights to Hugging Face Hub repository 4. **`llm_as_judge`** - **Purpose**: Quality evaluation - **Input**: Fine-tuned model path, test cases - **Process**: Generates test prompts, evaluates responses, scores quality - **Output**: Comprehensive evaluation report with metrics - **MCP Role**: Final validation step, agent parses results and presents to user - **Internal Functions** (executed within Modal): - `evaluate_model`: Runs validation metrics on the fine-tuned model during/after training #### 🧠 **Fistal's Agentic Approach** ```python # Agent makes decisions based on context agent decides: "User wants Python dataset" → invokes generate_json_data with optimal parameters agent observes: "Dataset generated successfully" → invokes format_json with received path agent monitors: "Training at 50%, loss decreasing" → continues monitoring, adjusts if needed agent validates: "Model trained, run evaluation" → invokes llm_as_judge for quality check ``` **Benefits**: - 🎯 **Intelligent Decision Making**: Agent chooses best parameters and strategies - 🔄 **Error Recovery**: Automatically retries failed steps with adjusted parameters - 📊 **Context Awareness**: Each tool receives relevant context from previous steps - 🔒 **Security**: MCP provides secure tool execution - 🔧 **Modularity**: Tools can be updated independently without breaking the workflow - 📈 **Scalability**: Easy to add new tools (e.g., hyperparameter tuning, multi-GPU training) --- ## 🛠️ Tech Stack
### Core Technologies - **[Unsloth](https://github.com/unslothai/unsloth)** - 2x faster training, 70% less VRAM - **[Modal](https://modal.com)** - Serverless GPU infrastructure - **[Gradio](https://gradio.app)** - Web interface on HF Spaces - **[LangGraph](https://github.com/langchain-ai/langgraph)** - Agentic workflow orchestration - **[MCP](https://modelcontextprotocol.io)** - Tool integration protocol - **[HUGGING FACE](https://huggingface.co/)** - Uploads model into repository with hf tokens ### AI Models & APIs - **Gemini Flash 2.0** - Fast dataset generation - **Groq (Llama 3.1 70B)** - LLM evaluation - **Hugging Face** - Model hosting & deployment - **4-bit Quantization** - Optimal quality/size balance - **Native HF Upload** - No format conversion needed
--- ## 📊 Performance Metrics | Metric | Value | Details | |--------|-------|---------| | **Dataset Generation** | 3x faster | Parallel processing with API keys | | **Training Speed** | 2x faster | Unsloth optimization | | **Memory Usage** | -70% | 4-bit quantization | | **Training Time** | 10-20 min | For 500 samples on T4 GPU | | **Model Size** | ~1-2 GB | Native HF format (safetensors) | | **Parameters Updated** | 0.1% | LoRA efficiency | | **MCP Tools** | 4 | Autonomous workflow management | --- ## 🔧 Supported Models & Tasks ### Prominent Models (1B-3B Parameters) - `Qwen/Qwen2.5-1.5B-Instruct` - `Qwen/Qwen2.5-3B-Instruct` - `meta-llama/Llama-3.2-1B-Instruct` - `meta-llama/Llama-3.2-3B-Instruct` - `google/gemma-2-2b-it` - `microsoft/Phi-3.5-mini-instruct` ### Popular Task Types - **text-generation**: General text completion and content creation - **question-answering**: Q&A pairs and knowledge retrieval ### Output Format - **Native Hugging Face format** (safetensors + adapter weights) - Immediately usable with transformers library - Compatible with HF Inference API --- ## 🎮 Try It Now
### 🚀 **[Launch Fistal AI Demo](https://drive.google.com/file/d/1-Uf2-k-gJsIozg-YX0oo_qWjeS31sq98/view?usp=sharing)** ### 📱 **[Read LinkedIn Post](https://www.linkedin.com/posts/mahreen-fathima-anis-5238ba36b_fistal-ai-a-hugging-face-space-by-mcp-1st-birthday-activity-7400939406448074752-SKAV?utm_source=share&utm_medium=member_desktop&rcm=ACoAAFvK0WsBW7LU9mIHS4nf2zGkEQ85Wi322Sg)** **Hosted on Hugging Face Spaces - No installation required!**
--- ## 📝 License This project is licensed under the APACHE License - see the [LICENSE](LICENSE) file for details. --- ## 🙏 Acknowledgments - **[Anthropic MCP](https://modelcontextprotocol.io)** - For the powerful tool integration protocol - **[Unsloth](https://github.com/unslothai/unsloth)** - For making fine-tuning accessible and fast - **[Modal](https://modal.com)** - For serverless GPU infrastructure - **[Hugging Face](https://huggingface.co)** - For model hosting and Spaces platform - **[Google Gemini](https://ai.google.dev/)** - For powerful API access - **[LangGraph](https://github.com/langchain-ai/langgraph)** - For agentic orchestration framework - **[Gradio](https://gradio.app)** - For building the interactive UI effortlessly ---
**Powered by MCP • Unsloth • Modal • Hugging Face • Gemini API** ❤️ Like our space our HuggingFace • 🚀 Try the demo • 📱 Share on LinkedIn