Spaces:
Runtime error
Runtime error
| fine_tuning_dir = "fine_tuned/SSD/model/Negel_79_AVA_script_conv_train_conv_dev/checkpoint-50" | |
| from typing import Any, Dict, List, Union | |
| from dataclasses import dataclass | |
| from transformers import Seq2SeqTrainer | |
| from transformers import WhisperProcessor, WhisperForConditionalGeneration, WhisperTokenizer, WhisperFeatureExtractor, Seq2SeqTrainingArguments, Seq2SeqTrainer, WhisperModel | |
| import evaluate | |
| from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC | |
| from random import sample | |
| from sys import flags | |
| import gradio as gr | |
| import torchaudio | |
| import torch.nn as nn | |
| import jiwer | |
| import numpy as np | |
| from rich import print as rprint | |
| from rich.progress import track | |
| from transformers import pipeline | |
| import argparse | |
| import yaml | |
| import torch | |
| from pathlib import Path | |
| from transformers import AutoTokenizer, AutoFeatureExtractor, AutoModelForCTC, AutoProcessor | |
| from datasets import load_dataset, concatenate_datasets | |
| from datasets import Dataset, Audio | |
| import pdb | |
| import string | |
| import librosa | |
| # local import | |
| import sys | |
| sys.path.append("src") | |
| import lightning_module | |
| torch.cuda.set_device("cuda:0") | |
| audio_dir = "./data/Patient_sil_trim_16k_normed_5_snr_40" | |
| healthy_dir = "./data/Healthy" | |
| Fary_PAL_30 = "./data/Fary_PAL_p326_20230110_30" | |
| John_p326 = "./data/John_p326/output" | |
| John_video = "./data/20230103_video" | |
| negel_79 = "./data/4_negel_79" | |
| patient_T = "data/Patient_T/Patient_T" | |
| patient_L = "data/Patient_L/Patient_L" | |
| # Get Transcription, WER and PPM | |
| """ | |
| TODO: | |
| [DONE]: Automatic generating Config | |
| """ | |
| sys.path.append("./src") | |
| wer = evaluate.load("wer") | |
| # root_path = Path(__file__).parents[1] | |
| class ChangeSampleRate(nn.Module): | |
| def __init__(self, input_rate: int, output_rate: int): | |
| super().__init__() | |
| self.output_rate = output_rate | |
| self.input_rate = input_rate | |
| def forward(self, wav: torch.tensor) -> torch.tensor: | |
| # Only accepts 1-channel waveform input | |
| wav = wav.view(wav.size(0), -1) | |
| new_length = wav.size(-1) * self.output_rate // self.input_rate | |
| indices = torch.arange(new_length) * ( | |
| self.input_rate / self.output_rate | |
| ) | |
| round_down = wav[:, indices.long()] | |
| round_up = wav[:, (indices.long() + 1).clamp(max=wav.size(-1) - 1)] | |
| output = round_down * (1.0 - indices.fmod(1.0)).unsqueeze( | |
| 0 | |
| ) + round_up * indices.fmod(1.0).unsqueeze(0) | |
| return output | |
| # resample and clean text data | |
| def dataclean(example): | |
| # pdb.set_trace() | |
| if example['audio']['sampling_rate'] != 16000: | |
| resampled_audio = librosa.resample(y=example['audio']['array'], | |
| orig_sr=example['audio']['sampling_rate'], | |
| target_sr=16000) | |
| # torchaudio.transforms.Resample(example['audio']['sampling_rate'], 16000) | |
| # resampled_audio = resampler(example['audio']['array']) | |
| return {"audio": {"path": example['audio']['path'], "array": resampled_audio, "sampling_rate": 16000}, | |
| "transcription": example["transcription"].upper().translate(str.maketrans('', '', string.punctuation))} | |
| else: | |
| return {"transcription": example["transcription"].upper().translate(str.maketrans('', '', string.punctuation))} | |
| processor = AutoFeatureExtractor.from_pretrained( | |
| "facebook/wav2vec2-base-960h" | |
| ) | |
| def prepare_dataset(batch): | |
| audio = batch["audio"] | |
| batch = processor( | |
| audio["array"], sampling_rate=audio["sampling_rate"], text=batch['transcription']) | |
| batch["input_length"] = len(batch["input_values"][0]) | |
| return batch | |
| negel_79_dataset = load_dataset("audiofolder", data_dir=negel_79, split="train") | |
| negel_79_dataset = negel_79_dataset.map(dataclean) | |
| def train_dev_test_split(dataset: Dataset, dev_rate=0.1, test_rate=0.1, seed=1): | |
| """ | |
| input: dataset | |
| dev_rate, | |
| test_rate | |
| seed | |
| ------- | |
| Output: | |
| dataset_dict{"train", "dev", "test"} | |
| """ | |
| train_dev_test = dataset.train_test_split(test_size=test_rate, seed=seed) | |
| test = train_dev_test["test"] | |
| train_dev = train_dev_test['train'] | |
| # pdb.set_trace() | |
| if len(train_dev) <= int(len(dataset)*dev_rate): | |
| train = Dataset.from_dict({"audio": [], "transcription": []}) | |
| dev = train_dev | |
| else: | |
| train_dev = train_dev.train_test_split(test_size=int(len(dataset)*dev_rate), seed=seed) | |
| train = train_dev['train'] | |
| dev = train_dev['test'] | |
| return train, dev, test | |
| # pdb.set_trace() | |
| # P1tony_train, P1tony_dev, P1tony_test = train_dev_test_split(P1tony_dataset, dev_rate=0.5, test_rate=0.5, seed=1) | |
| # P1tony_train_ = concatenate_datasets([P1tony_train,P1tony_scripted]) | |
| # pdb.set_trace() | |
| Negel_79_train, Negel_79_dev, Negel_79_test = train_dev_test_split(negel_79_dataset, dev_rate=0.1, test_rate=0.1, seed=1) | |
| # src_dataset = load_dataset("audiofolder", data_dir=audio_dir, split="train") | |
| # src_dataset = src_dataset.map(dataclean) | |
| # healthy_test_dataset = load_dataset( | |
| # "audiofolder", data_dir=healthy_dir, split='train') | |
| # healthy_test_dataset = healthy_test_dataset.map(dataclean) | |
| # Fary_PAL_test_dataset = load_dataset( | |
| # "audiofolder", data_dir=Fary_PAL_30, split='train') | |
| # Fary_PAL_test_dataset = Fary_PAL_test_dataset.map(dataclean) | |
| # John_p326_test_dataset = load_dataset( | |
| # "audiofolder", data_dir=John_p326, split='train') | |
| # John_p326_test_dataset = John_p326_test_dataset.map(dataclean) | |
| # John_video_test_dataset = load_dataset( | |
| # "audiofolder", data_dir=John_video, split='train') | |
| # John_video_test_dataset = John_video_test_dataset.map(dataclean) | |
| # patient_T_test_dataset = load_dataset("audiofolder", data_dir=patient_T, split='train') | |
| # patient_T_test_dataset = patient_T_test_dataset.map(dataclean) | |
| # patient_L_test_dataset = load_dataset("audiofolder", data_dir=patient_L, split='train') | |
| # patient_L_test_dataset = patient_L_test_dataset.map(dataclean) | |
| # pdb.set_trace() | |
| # train_dev / test | |
| # ds = src_dataset.train_test_split(test_size=0.1, seed=1) | |
| # dataset_libri = load_dataset( | |
| # "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
| # train_dev = ds['train'] | |
| # # train / dev | |
| # train_dev = train_dev.train_test_split( | |
| # test_size=int(len(src_dataset)*0.1), seed=1) | |
| # # train/dev/test | |
| # train = train_dev['train'] | |
| # test = ds['test'] | |
| # dev = train_dev['test'] | |
| # # pdb.set_trace() | |
| # encoded_train = train.map(prepare_dataset, num_proc=4) | |
| # encoded_dev = dev.map(prepare_dataset, num_proc=4) | |
| # encoded_test = test.map(prepare_dataset, num_proc=4) | |
| # encoded_healthy = healthy_test_dataset.map(prepare_dataset, num_proc=4) | |
| # encoded_Fary = Fary_PAL_test_dataset.map(prepare_dataset, num_proc=4) | |
| # encoded_John_p326 = John_p326_test_dataset.map(prepare_dataset, num_proc=4) | |
| # encoded_John_video = John_video_test_dataset.map(prepare_dataset, num_proc=4) | |
| # pdb.set_trace() | |
| WER = evaluate.load("wer") | |
| # Whisper decoding | |
| processor = WhisperProcessor.from_pretrained("openai/whisper-medium") | |
| model = WhisperForConditionalGeneration.from_pretrained( | |
| "openai/whisper-medium").to("cuda:0") | |
| tokenizer = WhisperTokenizer.from_pretrained( | |
| "openai/whisper-medium", language="English", task="transcribe") | |
| # Need to push tokenizer to hugginface/model to activate online API | |
| # tokenizer.push_to_hub("KevinGeng/whipser_medium_en_PAL300_step25") | |
| # import pdb | |
| # pdb.set_trace() | |
| feature_extractor = WhisperFeatureExtractor.from_pretrained( | |
| "openai/whisper-medium") | |
| def whisper_prepare_dataset(batch): | |
| # load and resample audio data from 48 to 16kHz | |
| audio = batch["audio"] | |
| # compute log-Mel input features from input audio array | |
| batch["input_features"] = feature_extractor( | |
| audio["array"], sampling_rate=audio["sampling_rate"]).input_features[0] | |
| # encode target text to label ids | |
| batch["labels"] = tokenizer(batch["transcription"]).input_ids | |
| return batch | |
| torch.cuda.empty_cache() | |
| training_args = Seq2SeqTrainingArguments( | |
| # change to a repo name of your choice | |
| output_dir="./whisper-medium-PAL128-25step", | |
| per_device_train_batch_size=8, | |
| gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size | |
| learning_rate=1e-5, | |
| warmup_steps=100, | |
| max_steps=1000, | |
| gradient_checkpointing=True, | |
| fp16=True, | |
| evaluation_strategy="steps", | |
| per_device_eval_batch_size=8, | |
| predict_with_generate=True, | |
| generation_max_length=512, | |
| save_steps=100, | |
| eval_steps=25, | |
| logging_steps=100, | |
| report_to=["tensorboard"], | |
| load_best_model_at_end=True, | |
| metric_for_best_model="wer", | |
| greater_is_better=False, | |
| push_to_hub=True, | |
| ) | |
| def my_map_to_pred(batch): | |
| # pdb.set_trace() | |
| audio = batch["audio"] | |
| input_features = processor( | |
| audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features | |
| # batch["reference"] = whisper_processor.tokenizer._normalize(batch['text']) | |
| batch["reference"] = processor.tokenizer._normalize(batch['transcription']) | |
| with torch.no_grad(): | |
| # predicted_ids = whisper_model.generate(input_features.to("cuda"))[0] | |
| predicted_ids = model.generate(input_features.to("cuda"))[0] | |
| transcription = model.decode(predicted_ids) | |
| batch["prediction"] = model.tokenizer._normalize(transcription) | |
| return batch | |
| class DataCollatorSpeechSeq2SeqWithPadding: | |
| processor: Any | |
| def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: | |
| # split inputs and labels since they have to be of different lengths and need different padding methods | |
| # first treat the audio inputs by simply returning torch tensors | |
| input_features = [{"input_features": feature["input_features"]} | |
| for feature in features] | |
| batch = self.processor.feature_extractor.pad( | |
| input_features, return_tensors="pt") | |
| # get the tokenized label sequences | |
| label_features = [{"input_ids": feature["labels"]} | |
| for feature in features] | |
| # pad the labels to max length | |
| labels_batch = self.processor.tokenizer.pad( | |
| label_features, return_tensors="pt") | |
| # replace padding with -100 to ignore loss correctly | |
| labels = labels_batch["input_ids"].masked_fill( | |
| labels_batch.attention_mask.ne(1), -100) | |
| # if bos token is appended in previous tokenization step, | |
| # cut bos token here as it's append later anyways | |
| if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item(): | |
| labels = labels[:, 1:] | |
| batch["labels"] = labels | |
| return batch | |
| data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor) | |
| def compute_metrics(pred): | |
| pdb.set_trace() | |
| pred_ids = pred.predictions | |
| label_ids = pred.label_ids | |
| # replace -100 with the pad_token_id | |
| label_ids[label_ids == -100] = tokenizer.pad_token_id | |
| # we do not want to group tokens when computing the metrics | |
| pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True) | |
| label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True) | |
| wer = 100 * WER.compute(predictions=pred_str, references=label_str) | |
| return {"wer": wer} | |
| encode_negel_79_train = Negel_79_train.map(whisper_prepare_dataset, num_proc=4) | |
| encode_negel_79_dev = Negel_79_dev.map(whisper_prepare_dataset, num_proc=4) | |
| encode_negel_79_test = Negel_79_test.map(whisper_prepare_dataset, num_proc=4) | |
| pdb.set_trace() | |
| torch.cuda.empty_cache() | |
| torch.cuda.empty_cache() | |
| fine_tuned_model = WhisperForConditionalGeneration.from_pretrained( | |
| fine_tuning_dir | |
| ).to("cuda") | |
| # "fine_tuned/SSD/model/whipser_medium_TEP_patient_T" | |
| # "./fine_tuned/whipser_medium_en_PAL300_step25_step2_VCTK/checkpoint-400" | |
| #"./fine_tuned/whipser_medium_en_PAL300_step25_step2_VCTK/checkpoint-200" | |
| def fine_tuned_map_to_pred(batch): | |
| # pdb.set_trace() | |
| audio = batch["audio"] | |
| input_features = processor( | |
| audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features | |
| # batch["reference"] = whisper_processor.tokenizer._normalize(batch['text']) | |
| batch["reference"] = processor.tokenizer._normalize(batch['transcription']) | |
| with torch.no_grad(): | |
| # predicted_ids = whisper_model.generate(input_features.to("cuda"))[0] | |
| predicted_ids = fine_tuned_model.generate(input_features.to("cuda"))[0] | |
| transcription = tokenizer.decode(predicted_ids) | |
| batch["prediction"] = tokenizer._normalize(transcription) | |
| return batch | |
| # output_dir="./fine_tuned/whipser_medium_en_PAL300_step25_step2_VCTK/checkpoint-400", | |
| testing_args = Seq2SeqTrainingArguments( | |
| # change to a repo name of your choice | |
| output_dir="fine_tuned/SSD/model/whipser_medium_TEP_patient_TL_TL", | |
| per_device_train_batch_size=8, | |
| gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size | |
| learning_rate=1e-5, | |
| warmup_steps=100, | |
| max_steps=1000, | |
| gradient_checkpointing=True, | |
| fp16=True, | |
| evaluation_strategy="steps", | |
| per_device_eval_batch_size=8, | |
| predict_with_generate=True, | |
| generation_max_length=512, | |
| save_steps=100, | |
| eval_steps=25, | |
| logging_steps=100, | |
| report_to=["tensorboard"], | |
| load_best_model_at_end=True, | |
| metric_for_best_model="wer", | |
| greater_is_better=False, | |
| push_to_hub=False, | |
| ) | |
| predict_trainer = Seq2SeqTrainer( | |
| args=testing_args, | |
| model=fine_tuned_model, | |
| data_collator=data_collator, | |
| compute_metrics=compute_metrics, | |
| tokenizer=processor.feature_extractor, | |
| ) | |
| # trainer.train() | |
| # fine tuned | |
| # z_result = encoded_test.map(fine_tuned_map_to_pred) | |
| pdb.set_trace() | |
| z_result= encode_negel_79_test.map(fine_tuned_map_to_pred) | |
| # 0.4692737430167598 | |
| z = WER.compute(references=z_result['reference'], predictions=z_result['prediction']) | |
| # pdb.set_trace() | |
| # z_hel_result = encoded_healthy.map(fine_tuned_map_to_pred) | |
| # z_hel = WER.compute(references=z_hel_result['reference'], predictions=z_hel_result['prediction']) | |
| # # 0.1591610117211598 | |
| # # pdb.set_trace() | |
| # # z_fary_result = encoded_Fary.map(fine_tuned_map_to_pred) | |
| # # z_far = WER.compute(references=z_fary_result['reference'], predictions=z_fary_result['prediction']) | |
| # # 0.1791044776119403 | |
| # z_patient_LT = encoded_patient_TL_test.map(fine_tuned_map_to_pred) | |
| # z_patient_LT_result = WER.compute(references=z_patient_LT['reference'], predictions=z_patient_LT['prediction']) | |
| # z_patient_L = encoded_patient_L_test.map(fine_tuned_map_to_pred) | |
| # z_patient_L_result = WER.compute(references=z_patient_L['reference'], predictions=z_patient_L['prediction']) | |
| # z_patient_T = encoded_patient_T_test.map(fine_tuned_map_to_pred) | |
| # z_patient_T_result = WER.compute(references=z_patient_T['reference'], predictions=z_patient_T['prediction']) | |
| # # z_john_p326_result = encoded_John_p326.map(fine_tuned_map_to_pred) | |
| # # pdb.set_trace() | |
| # # z_john_p326 = WER.compute(references=z_john_p326_result['reference'], predictions=z_john_p326_result['prediction']) | |
| # # 0.4648241206030151 | |
| pdb.set_trace() | |
| # # y_John_video= fine_tuned_trainer.predict(encoded_John_video) | |
| # # metrics={'test_loss': 2.665189743041992, 'test_wer': 0.7222222222222222, 'test_runtime': 0.1633, 'test_samples_per_second': 48.979, 'test_steps_per_second': 6.122}) | |
| # pdb.set_trace() | |
| # p326 training | |
| # metrics={'test_loss': 0.4804028868675232, 'test_wer': 0.21787709497206703, 'test_runtime': 0.3594, 'test_samples_per_second': 44.517, 'test_steps_per_second': 5.565}) | |
| # hel metrics={'test_loss': 1.6363693475723267, 'test_wer': 0.17951881554595928, 'test_runtime': 3.8451, 'test_samples_per_second': 41.611, 'test_steps_per_second': 5.201}) | |
| # Fary: metrics={'t est_loss': 1.4633615016937256, 'test_wer': 0.5572139303482587, 'test_runtime': 0.6627, 'test_samples_per_second': 45.27, 'test_steps_per_second': 6.036}) | |
| # p326 large: metrics={'test_loss': 0.6568527817726135, 'test_wer': 0.2889447236180904, 'test_runtime': 0.7169, 'test_samples_per_second': 51.613, 'test_steps_per_second': 6.975}) | |