Create poc.py
Browse files
poc.py
ADDED
|
@@ -0,0 +1,656 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
"""
|
| 3 |
+
Flexible Batch I2V Generator with Temporal Consistency
|
| 4 |
+
Generates N frames at a time (1, 2, 3, etc.) while maintaining temporal consistency
|
| 5 |
+
Optimized for Image-to-Video models with reference frame initialization
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
from typing import List, Optional, Tuple, Dict, Any, Union
|
| 12 |
+
import numpy as np
|
| 13 |
+
from collections import deque
|
| 14 |
+
import math
|
| 15 |
+
from PIL import Image
|
| 16 |
+
import torchvision.transforms as transforms
|
| 17 |
+
|
| 18 |
+
class TemporalConsistencyBuffer:
|
| 19 |
+
"""Enhanced temporal buffer for flexible batch generation"""
|
| 20 |
+
|
| 21 |
+
def __init__(self, buffer_size: int = 8, feature_dim: int = 512):
|
| 22 |
+
self.buffer_size = buffer_size
|
| 23 |
+
self.feature_dim = feature_dim
|
| 24 |
+
self.frame_features = deque(maxlen=buffer_size)
|
| 25 |
+
self.frame_latents = deque(maxlen=buffer_size)
|
| 26 |
+
self.frame_images = deque(maxlen=buffer_size) # Store actual frames for I2V
|
| 27 |
+
self.motion_vectors = deque(maxlen=buffer_size-1)
|
| 28 |
+
self.temporal_weights = deque(maxlen=buffer_size) # Importance weights
|
| 29 |
+
|
| 30 |
+
def add_frames(self, features: torch.Tensor, latents: torch.Tensor, images: Optional[torch.Tensor] = None, batch_size: int = 1):
|
| 31 |
+
"""Add batch of frames to temporal buffer"""
|
| 32 |
+
for i in range(batch_size):
|
| 33 |
+
frame_feat = features[i:i+1] if features.dim() > 3 else features
|
| 34 |
+
frame_lat = latents[i:i+1] if latents.dim() > 3 else latents
|
| 35 |
+
frame_img = images[i:i+1] if images is not None and images.dim() > 3 else images
|
| 36 |
+
|
| 37 |
+
# Calculate motion vector if we have previous frames
|
| 38 |
+
if len(self.frame_features) > 0:
|
| 39 |
+
motion = frame_feat - self.frame_features[-1]
|
| 40 |
+
self.motion_vectors.append(motion)
|
| 41 |
+
|
| 42 |
+
self.frame_features.append(frame_feat)
|
| 43 |
+
self.frame_latents.append(frame_lat)
|
| 44 |
+
if frame_img is not None:
|
| 45 |
+
self.frame_images.append(frame_img)
|
| 46 |
+
|
| 47 |
+
# Weight newer frames more heavily
|
| 48 |
+
weight = 1.0 / (len(self.frame_features) + 1)
|
| 49 |
+
self.temporal_weights.append(weight)
|
| 50 |
+
|
| 51 |
+
def get_reference_frame(self) -> Optional[torch.Tensor]:
|
| 52 |
+
"""Get the most recent frame as reference for I2V"""
|
| 53 |
+
if len(self.frame_images) > 0:
|
| 54 |
+
return self.frame_images[-1]
|
| 55 |
+
elif len(self.frame_latents) > 0:
|
| 56 |
+
return self.frame_latents[-1]
|
| 57 |
+
return None
|
| 58 |
+
|
| 59 |
+
def get_temporal_context(self, num_context_frames: int = 4) -> Dict[str, torch.Tensor]:
|
| 60 |
+
"""Get weighted temporal context for next frame batch"""
|
| 61 |
+
if len(self.frame_features) == 0:
|
| 62 |
+
return {"has_context": False}
|
| 63 |
+
|
| 64 |
+
# Get most recent frames up to num_context_frames
|
| 65 |
+
context_size = min(num_context_frames, len(self.frame_features))
|
| 66 |
+
recent_features = list(self.frame_features)[-context_size:]
|
| 67 |
+
recent_latents = list(self.frame_latents)[-context_size:]
|
| 68 |
+
recent_weights = list(self.temporal_weights)[-context_size:]
|
| 69 |
+
|
| 70 |
+
# Stack with attention to batch dimension
|
| 71 |
+
stacked_features = torch.cat(recent_features, dim=0) # [T, C, H, W]
|
| 72 |
+
stacked_latents = torch.cat(recent_latents, dim=0)
|
| 73 |
+
weights = torch.tensor(recent_weights, device=stacked_features.device)
|
| 74 |
+
|
| 75 |
+
# Predict motion for next frames
|
| 76 |
+
predicted_motions = []
|
| 77 |
+
if len(self.motion_vectors) >= 2:
|
| 78 |
+
# Multi-step motion prediction
|
| 79 |
+
recent_motions = list(self.motion_vectors)[-3:] # Last 3 motions
|
| 80 |
+
for step in range(1, 4): # Predict up to 3 steps ahead
|
| 81 |
+
if len(recent_motions) >= 2:
|
| 82 |
+
# Weighted motion extrapolation
|
| 83 |
+
motion_pred = (
|
| 84 |
+
recent_motions[-1] * 1.5 -
|
| 85 |
+
recent_motions[-2] * 0.5
|
| 86 |
+
)
|
| 87 |
+
if len(recent_motions) >= 3:
|
| 88 |
+
motion_pred += recent_motions[-3] * 0.1
|
| 89 |
+
else:
|
| 90 |
+
motion_pred = recent_motions[-1] if recent_motions else None
|
| 91 |
+
predicted_motions.append(motion_pred)
|
| 92 |
+
|
| 93 |
+
return {
|
| 94 |
+
"has_context": True,
|
| 95 |
+
"frame_features": stacked_features,
|
| 96 |
+
"frame_latents": stacked_latents,
|
| 97 |
+
"temporal_weights": weights,
|
| 98 |
+
"predicted_motions": predicted_motions,
|
| 99 |
+
"sequence_length": len(self.frame_features),
|
| 100 |
+
"reference_frame": self.get_reference_frame()
|
| 101 |
+
}
|
| 102 |
+
|
| 103 |
+
class FlexibleTemporalAttention(nn.Module):
|
| 104 |
+
"""Flexible attention that handles variable batch sizes"""
|
| 105 |
+
|
| 106 |
+
def __init__(self, dim: int, num_heads: int = 8, max_frames: int = 16):
|
| 107 |
+
super().__init__()
|
| 108 |
+
self.dim = dim
|
| 109 |
+
self.num_heads = num_heads
|
| 110 |
+
self.head_dim = dim // num_heads
|
| 111 |
+
self.scale = self.head_dim ** -0.5
|
| 112 |
+
self.max_frames = max_frames
|
| 113 |
+
|
| 114 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=False)
|
| 115 |
+
self.proj = nn.Linear(dim, dim)
|
| 116 |
+
|
| 117 |
+
# Learnable temporal positional embeddings
|
| 118 |
+
self.temporal_pos_embed = nn.Parameter(torch.randn(1, max_frames, dim) * 0.02)
|
| 119 |
+
self.frame_type_embed = nn.Parameter(torch.randn(3, dim) * 0.02) # past, current, future
|
| 120 |
+
|
| 121 |
+
# Cross-frame interaction
|
| 122 |
+
self.cross_frame_norm = nn.LayerNorm(dim)
|
| 123 |
+
self.cross_frame_mlp = nn.Sequential(
|
| 124 |
+
nn.Linear(dim, dim * 2),
|
| 125 |
+
nn.GELU(),
|
| 126 |
+
nn.Linear(dim * 2, dim)
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
def forward(self, current_frames: torch.Tensor, temporal_context: Dict[str, Any], num_current_frames: int = 1):
|
| 130 |
+
"""
|
| 131 |
+
current_frames: [B*N, H*W, C] where N is number of frames being generated
|
| 132 |
+
temporal_context: dict with past frame information
|
| 133 |
+
"""
|
| 134 |
+
B_times_N, HW, C = current_frames.shape
|
| 135 |
+
B = B_times_N // num_current_frames
|
| 136 |
+
|
| 137 |
+
if not temporal_context.get("has_context", False):
|
| 138 |
+
return current_frames
|
| 139 |
+
|
| 140 |
+
# Reshape current frames
|
| 141 |
+
current = current_frames.view(B, num_current_frames, HW, C)
|
| 142 |
+
|
| 143 |
+
# Get temporal context
|
| 144 |
+
past_features = temporal_context["frame_features"] # [T, C, H, W]
|
| 145 |
+
T, _, H, W = past_features.shape
|
| 146 |
+
past_features = past_features.view(T, C, H*W).permute(0, 2, 1) # [T, H*W, C]
|
| 147 |
+
past_features = past_features.unsqueeze(0).expand(B, -1, -1, -1) # [B, T, H*W, C]
|
| 148 |
+
|
| 149 |
+
# Combine all frames (past + current)
|
| 150 |
+
all_frames = torch.cat([past_features, current], dim=1) # [B, T+N, H*W, C]
|
| 151 |
+
total_frames = T + num_current_frames
|
| 152 |
+
|
| 153 |
+
# Add positional embeddings
|
| 154 |
+
pos_ids = torch.arange(total_frames, device=current_frames.device)
|
| 155 |
+
pos_embed = self.temporal_pos_embed[:, :total_frames] # [1, T+N, C]
|
| 156 |
+
|
| 157 |
+
# Add frame type embeddings (past=0, current=1, future=2)
|
| 158 |
+
frame_type_ids = torch.cat([
|
| 159 |
+
torch.zeros(T, device=current_frames.device), # past frames
|
| 160 |
+
torch.ones(num_current_frames, device=current_frames.device) # current frames
|
| 161 |
+
]).long()
|
| 162 |
+
type_embed = self.frame_type_embed[frame_type_ids] # [T+N, C]
|
| 163 |
+
|
| 164 |
+
# Apply embeddings
|
| 165 |
+
all_frames = all_frames + pos_embed.unsqueeze(2) + type_embed.unsqueeze(0).unsqueeze(2)
|
| 166 |
+
|
| 167 |
+
# Flatten for attention
|
| 168 |
+
all_frames_flat = all_frames.view(B, total_frames * HW, C)
|
| 169 |
+
|
| 170 |
+
# Multi-head attention
|
| 171 |
+
qkv = self.qkv(all_frames_flat).reshape(B, -1, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
| 172 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
| 173 |
+
|
| 174 |
+
# Temporal attention with causality mask for current frames
|
| 175 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
| 176 |
+
|
| 177 |
+
# Create causal mask - current frames can see past + themselves, but not future
|
| 178 |
+
mask = torch.triu(torch.ones(total_frames * HW, total_frames * HW, device=current_frames.device), diagonal=1)
|
| 179 |
+
mask = mask.bool()
|
| 180 |
+
attn = attn.masked_fill(mask.unsqueeze(0).unsqueeze(0), float('-inf'))
|
| 181 |
+
|
| 182 |
+
attn = attn.softmax(dim=-1)
|
| 183 |
+
out = (attn @ v).transpose(1, 2).reshape(B, total_frames * HW, C)
|
| 184 |
+
|
| 185 |
+
# Extract only current frame features
|
| 186 |
+
current_start = T * HW
|
| 187 |
+
enhanced_current = out[:, current_start:] # [B, N*H*W, C]
|
| 188 |
+
enhanced_current = self.proj(enhanced_current)
|
| 189 |
+
|
| 190 |
+
# Cross-frame interaction within current batch
|
| 191 |
+
if num_current_frames > 1:
|
| 192 |
+
enhanced_current = enhanced_current.view(B, num_current_frames, HW, C)
|
| 193 |
+
for i in range(num_current_frames):
|
| 194 |
+
frame_i = enhanced_current[:, i] # [B, H*W, C]
|
| 195 |
+
|
| 196 |
+
# Interact with other frames in current batch
|
| 197 |
+
other_frames = torch.cat([
|
| 198 |
+
enhanced_current[:, :i],
|
| 199 |
+
enhanced_current[:, i+1:]
|
| 200 |
+
], dim=1) if num_current_frames > 1 else None
|
| 201 |
+
|
| 202 |
+
if other_frames is not None:
|
| 203 |
+
cross_context = other_frames.mean(dim=1) # [B, H*W, C]
|
| 204 |
+
frame_i_norm = self.cross_frame_norm(frame_i + cross_context)
|
| 205 |
+
frame_i = frame_i + self.cross_frame_mlp(frame_i_norm)
|
| 206 |
+
enhanced_current[:, i] = frame_i
|
| 207 |
+
|
| 208 |
+
enhanced_current = enhanced_current.view(B * num_current_frames, HW, C)
|
| 209 |
+
|
| 210 |
+
return enhanced_current
|
| 211 |
+
|
| 212 |
+
class FlexibleI2VDiffuser(nn.Module):
|
| 213 |
+
"""Flexible I2V diffusion model that generates N frames at a time"""
|
| 214 |
+
|
| 215 |
+
def __init__(
|
| 216 |
+
self,
|
| 217 |
+
base_diffusion_model,
|
| 218 |
+
feature_dim: int = 512,
|
| 219 |
+
temporal_buffer_size: int = 8,
|
| 220 |
+
num_attention_heads: int = 8,
|
| 221 |
+
max_batch_frames: int = 3
|
| 222 |
+
):
|
| 223 |
+
super().__init__()
|
| 224 |
+
self.base_model = base_diffusion_model
|
| 225 |
+
self.feature_dim = feature_dim
|
| 226 |
+
self.temporal_buffer_size = temporal_buffer_size
|
| 227 |
+
self.max_batch_frames = max_batch_frames
|
| 228 |
+
|
| 229 |
+
# Enhanced feature extraction for I2V
|
| 230 |
+
self.image_encoder = nn.Sequential(
|
| 231 |
+
nn.Conv2d(3, feature_dim // 4, 7, padding=3),
|
| 232 |
+
nn.GroupNorm(8, feature_dim // 4),
|
| 233 |
+
nn.SiLU(),
|
| 234 |
+
nn.Conv2d(feature_dim // 4, feature_dim // 2, 3, padding=1, stride=2),
|
| 235 |
+
nn.GroupNorm(8, feature_dim // 2),
|
| 236 |
+
nn.SiLU(),
|
| 237 |
+
nn.Conv2d(feature_dim // 2, feature_dim, 3, padding=1, stride=2),
|
| 238 |
+
nn.GroupNorm(8, feature_dim),
|
| 239 |
+
nn.SiLU()
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
self.latent_encoder = nn.Conv2d(
|
| 243 |
+
base_diffusion_model.in_channels, feature_dim, 3, padding=1
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
# Flexible temporal attention
|
| 247 |
+
self.temporal_attention = FlexibleTemporalAttention(
|
| 248 |
+
feature_dim, num_attention_heads, max_batch_frames * 4
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
# I2V specific components
|
| 252 |
+
self.reference_adapter = nn.Sequential(
|
| 253 |
+
nn.Conv2d(feature_dim * 2, feature_dim, 1),
|
| 254 |
+
nn.GroupNorm(8, feature_dim),
|
| 255 |
+
nn.SiLU()
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
self.motion_conditioner = nn.Sequential(
|
| 259 |
+
nn.Linear(feature_dim, feature_dim * 2),
|
| 260 |
+
nn.GELU(),
|
| 261 |
+
nn.Linear(feature_dim * 2, feature_dim)
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
# Multi-frame consistency
|
| 265 |
+
self.frame_consistency_net = nn.Sequential(
|
| 266 |
+
nn.Conv3d(feature_dim, feature_dim, (3, 3, 3), padding=(1, 1, 1)),
|
| 267 |
+
nn.GroupNorm(8, feature_dim),
|
| 268 |
+
nn.SiLU(),
|
| 269 |
+
nn.Conv3d(feature_dim, feature_dim, (1, 3, 3), padding=(0, 1, 1))
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
# Initialize temporal buffer
|
| 274 |
+
self.temporal_buffer = TemporalConsistencyBuffer(temporal_buffer_size, feature_dim)
|
| 275 |
+
|
| 276 |
+
def encode_reference_image(self, image: torch.Tensor) -> torch.Tensor:
|
| 277 |
+
"""Encode reference image for I2V conditioning"""
|
| 278 |
+
if image.shape[1] == 3: # RGB image
|
| 279 |
+
return self.image_encoder(image)
|
| 280 |
+
else: # Already encoded latent
|
| 281 |
+
return self.latent_encoder(image)
|
| 282 |
+
|
| 283 |
+
def apply_i2v_conditioning(
|
| 284 |
+
self,
|
| 285 |
+
current_latents: torch.Tensor, # [B*N, C, H, W]
|
| 286 |
+
temporal_context: Dict[str, Any],
|
| 287 |
+
num_frames: int = 1
|
| 288 |
+
) -> torch.Tensor:
|
| 289 |
+
"""Apply I2V conditioning with flexible frame count"""
|
| 290 |
+
|
| 291 |
+
B_times_N, C, H, W = current_latents.shape
|
| 292 |
+
B = B_times_N // num_frames
|
| 293 |
+
|
| 294 |
+
# Extract features from current latents
|
| 295 |
+
current_features = self.latent_encoder(current_latents) # [B*N, F, H, W]
|
| 296 |
+
|
| 297 |
+
if not temporal_context.get("has_context", False):
|
| 298 |
+
return current_latents
|
| 299 |
+
|
| 300 |
+
# Apply temporal attention
|
| 301 |
+
current_flat = current_features.flatten(2).transpose(1, 2) # [B*N, H*W, F]
|
| 302 |
+
enhanced_features = self.temporal_attention(current_flat, temporal_context, num_frames)
|
| 303 |
+
enhanced_features = enhanced_features.transpose(1, 2).reshape(B_times_N, -1, H, W)
|
| 304 |
+
|
| 305 |
+
# Reference frame conditioning for I2V
|
| 306 |
+
if temporal_context.get("reference_frame") is not None:
|
| 307 |
+
ref_frame = temporal_context["reference_frame"]
|
| 308 |
+
ref_features = self.encode_reference_image(ref_frame)
|
| 309 |
+
|
| 310 |
+
# Broadcast reference to all current frames
|
| 311 |
+
ref_features = ref_features.repeat(num_frames, 1, 1, 1)
|
| 312 |
+
|
| 313 |
+
# Combine with current features
|
| 314 |
+
combined_features = torch.cat([enhanced_features, ref_features], dim=1)
|
| 315 |
+
conditioned_features = self.reference_adapter(combined_features)
|
| 316 |
+
else:
|
| 317 |
+
conditioned_features = enhanced_features
|
| 318 |
+
|
| 319 |
+
# Multi-frame consistency for batch generation
|
| 320 |
+
if num_frames > 1:
|
| 321 |
+
# Reshape for 3D convolution
|
| 322 |
+
batch_features = conditioned_features.view(B, num_frames, -1, H, W)
|
| 323 |
+
batch_features = batch_features.permute(0, 2, 1, 3, 4) # [B, C, T, H, W]
|
| 324 |
+
|
| 325 |
+
# Apply 3D consistency
|
| 326 |
+
consistent_features = self.frame_consistency_net(batch_features)
|
| 327 |
+
consistent_features = consistent_features.permute(0, 2, 1, 3, 4) # [B, T, C, H, W]
|
| 328 |
+
conditioned_features = consistent_features.reshape(B_times_N, -1, H, W)
|
| 329 |
+
|
| 330 |
+
# Motion conditioning
|
| 331 |
+
if temporal_context.get("predicted_motions"):
|
| 332 |
+
motions = temporal_context["predicted_motions"][:num_frames]
|
| 333 |
+
for i, motion in enumerate(motions):
|
| 334 |
+
if motion is not None:
|
| 335 |
+
frame_idx = i * B + torch.arange(B, device=current_latents.device)
|
| 336 |
+
motion_flat = motion.flatten(2).transpose(1, 2).mean(dim=1) # [B, F]
|
| 337 |
+
motion_cond = self.motion_conditioner(motion_flat) # [B, F]
|
| 338 |
+
motion_cond = motion_cond.unsqueeze(-1).unsqueeze(-1) # [B, F, 1, 1]
|
| 339 |
+
conditioned_features[frame_idx] += motion_cond
|
| 340 |
+
|
| 341 |
+
# Blend with original latents
|
| 342 |
+
alpha = 0.4 # I2V conditioning strength
|
| 343 |
+
enhanced_latents = current_latents + alpha * conditioned_features
|
| 344 |
+
|
| 345 |
+
return enhanced_latents
|
| 346 |
+
|
| 347 |
+
def forward(
|
| 348 |
+
self,
|
| 349 |
+
noisy_latents: torch.Tensor, # [B*N, C, H, W]
|
| 350 |
+
timestep: torch.Tensor,
|
| 351 |
+
text_embeddings: torch.Tensor,
|
| 352 |
+
num_frames: int = 1,
|
| 353 |
+
use_temporal_consistency: bool = True
|
| 354 |
+
) -> torch.Tensor:
|
| 355 |
+
"""Forward pass with flexible frame count"""
|
| 356 |
+
|
| 357 |
+
if use_temporal_consistency:
|
| 358 |
+
# Get temporal context
|
| 359 |
+
temporal_context = self.temporal_buffer.get_temporal_context()
|
| 360 |
+
|
| 361 |
+
# Apply I2V conditioning
|
| 362 |
+
enhanced_latents = self.apply_i2v_conditioning(
|
| 363 |
+
noisy_latents, temporal_context, num_frames
|
| 364 |
+
)
|
| 365 |
+
else:
|
| 366 |
+
enhanced_latents = noisy_latents
|
| 367 |
+
|
| 368 |
+
# Expand text embeddings for multiple frames
|
| 369 |
+
if text_embeddings.shape[0] != enhanced_latents.shape[0]:
|
| 370 |
+
text_embeddings = text_embeddings.repeat(num_frames, 1, 1)
|
| 371 |
+
|
| 372 |
+
# Run base diffusion model
|
| 373 |
+
noise_pred = self.base_model(enhanced_latents, timestep, text_embeddings)
|
| 374 |
+
|
| 375 |
+
return noise_pred
|
| 376 |
+
|
| 377 |
+
def update_temporal_buffer(self, latents: torch.Tensor, images: Optional[torch.Tensor] = None, num_frames: int = 1):
|
| 378 |
+
"""Update temporal buffer with generated frames"""
|
| 379 |
+
with torch.no_grad():
|
| 380 |
+
features = self.latent_encoder(latents)
|
| 381 |
+
self.temporal_buffer.add_frames(features, latents, images, num_frames)
|
| 382 |
+
|
| 383 |
+
class FlexibleI2VGenerator:
|
| 384 |
+
"""High-level generator with configurable frame batch sizes"""
|
| 385 |
+
|
| 386 |
+
def __init__(
|
| 387 |
+
self,
|
| 388 |
+
diffusion_model: FlexibleI2VDiffuser,
|
| 389 |
+
scheduler,
|
| 390 |
+
vae, # For encoding/decoding images
|
| 391 |
+
device: str = "cuda"
|
| 392 |
+
):
|
| 393 |
+
self.model = diffusion_model
|
| 394 |
+
self.scheduler = scheduler
|
| 395 |
+
self.vae = vae
|
| 396 |
+
self.device = device
|
| 397 |
+
|
| 398 |
+
# Image preprocessing
|
| 399 |
+
self.image_transform = transforms.Compose([
|
| 400 |
+
transforms.Resize((512, 512)),
|
| 401 |
+
transforms.ToTensor(),
|
| 402 |
+
transforms.Normalize([0.5], [0.5])
|
| 403 |
+
])
|
| 404 |
+
|
| 405 |
+
def encode_image(self, image: Union[Image.Image, torch.Tensor]) -> torch.Tensor:
|
| 406 |
+
"""Encode PIL image or tensor to latent space"""
|
| 407 |
+
if isinstance(image, Image.Image):
|
| 408 |
+
image = self.image_transform(image).unsqueeze(0).to(self.device)
|
| 409 |
+
|
| 410 |
+
with torch.no_grad():
|
| 411 |
+
latent = self.vae.encode(image).latent_dist.sample()
|
| 412 |
+
latent = latent * self.vae.config.scaling_factor
|
| 413 |
+
|
| 414 |
+
return latent
|
| 415 |
+
|
| 416 |
+
def decode_latents(self, latents: torch.Tensor) -> torch.Tensor:
|
| 417 |
+
"""Decode latents to images"""
|
| 418 |
+
with torch.no_grad():
|
| 419 |
+
latents = latents / self.vae.config.scaling_factor
|
| 420 |
+
images = self.vae.decode(latents).sample
|
| 421 |
+
images = (images + 1.0) / 2.0
|
| 422 |
+
images = torch.clamp(images, 0.0, 1.0)
|
| 423 |
+
return images
|
| 424 |
+
|
| 425 |
+
@torch.no_grad()
|
| 426 |
+
def generate_i2v_sequence(
|
| 427 |
+
self,
|
| 428 |
+
reference_image: Union[Image.Image, torch.Tensor],
|
| 429 |
+
prompt: str,
|
| 430 |
+
text_encoder,
|
| 431 |
+
tokenizer,
|
| 432 |
+
num_frames: int = 16,
|
| 433 |
+
frames_per_batch: int = 2, # This is the key parameter!
|
| 434 |
+
num_inference_steps: int = 20,
|
| 435 |
+
guidance_scale: float = 7.5,
|
| 436 |
+
generator: Optional[torch.Generator] = None,
|
| 437 |
+
callback=None
|
| 438 |
+
) -> List[torch.Tensor]:
|
| 439 |
+
"""Generate I2V sequence with configurable batch size"""
|
| 440 |
+
|
| 441 |
+
print(f"π¬ Generating {num_frames} frames in batches of {frames_per_batch}")
|
| 442 |
+
|
| 443 |
+
# Encode reference image
|
| 444 |
+
ref_latent = self.encode_image(reference_image)
|
| 445 |
+
ref_image_tensor = reference_image if isinstance(reference_image, torch.Tensor) else \
|
| 446 |
+
self.image_transform(reference_image).unsqueeze(0).to(self.device)
|
| 447 |
+
|
| 448 |
+
# Encode text prompt
|
| 449 |
+
text_inputs = tokenizer(
|
| 450 |
+
prompt,
|
| 451 |
+
padding="max_length",
|
| 452 |
+
max_length=tokenizer.model_max_length,
|
| 453 |
+
truncation=True,
|
| 454 |
+
return_tensors="pt"
|
| 455 |
+
)
|
| 456 |
+
text_embeddings = text_encoder(text_inputs.input_ids.to(self.device))[0]
|
| 457 |
+
|
| 458 |
+
# Prepare unconditional embeddings
|
| 459 |
+
uncond_tokens = [""]
|
| 460 |
+
uncond_inputs = tokenizer(
|
| 461 |
+
uncond_tokens,
|
| 462 |
+
padding="max_length",
|
| 463 |
+
max_length=tokenizer.model_max_length,
|
| 464 |
+
return_tensors="pt"
|
| 465 |
+
)
|
| 466 |
+
uncond_embeddings = text_encoder(uncond_inputs.input_ids.to(self.device))[0]
|
| 467 |
+
|
| 468 |
+
# Reset temporal buffer and add reference frame
|
| 469 |
+
self.model.temporal_buffer = TemporalConsistencyBuffer(
|
| 470 |
+
self.model.temporal_buffer_size,
|
| 471 |
+
self.model.feature_dim
|
| 472 |
+
)
|
| 473 |
+
self.model.update_temporal_buffer(ref_latent, ref_image_tensor, 1)
|
| 474 |
+
|
| 475 |
+
generated_frames = [ref_latent]
|
| 476 |
+
latent_shape = ref_latent.shape
|
| 477 |
+
|
| 478 |
+
# Generate in flexible batches
|
| 479 |
+
frames_generated = 1 # Start with reference frame
|
| 480 |
+
|
| 481 |
+
while frames_generated < num_frames:
|
| 482 |
+
# Calculate current batch size
|
| 483 |
+
remaining_frames = num_frames - frames_generated
|
| 484 |
+
current_batch_size = min(frames_per_batch, remaining_frames)
|
| 485 |
+
|
| 486 |
+
print(f"π― Generating frames {frames_generated+1}-{frames_generated+current_batch_size}")
|
| 487 |
+
|
| 488 |
+
# Initialize noise for current batch
|
| 489 |
+
batch_latents = torch.randn(
|
| 490 |
+
(current_batch_size, *latent_shape[1:]),
|
| 491 |
+
generator=generator,
|
| 492 |
+
device=self.device,
|
| 493 |
+
dtype=text_embeddings.dtype
|
| 494 |
+
)
|
| 495 |
+
|
| 496 |
+
# Prepare embeddings for batch
|
| 497 |
+
batch_text_embeddings = torch.cat([
|
| 498 |
+
uncond_embeddings.repeat(current_batch_size, 1, 1),
|
| 499 |
+
text_embeddings.repeat(current_batch_size, 1, 1)
|
| 500 |
+
])
|
| 501 |
+
|
| 502 |
+
# Set scheduler timesteps
|
| 503 |
+
self.scheduler.set_timesteps(num_inference_steps, device=self.device)
|
| 504 |
+
timesteps = self.scheduler.timesteps
|
| 505 |
+
|
| 506 |
+
# Denoising loop for current batch
|
| 507 |
+
for i, t in enumerate(timesteps):
|
| 508 |
+
# Expand for classifier-free guidance
|
| 509 |
+
latent_model_input = torch.cat([batch_latents] * 2)
|
| 510 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 511 |
+
|
| 512 |
+
# Predict noise with temporal consistency
|
| 513 |
+
noise_pred = self.model(
|
| 514 |
+
latent_model_input,
|
| 515 |
+
t,
|
| 516 |
+
batch_text_embeddings,
|
| 517 |
+
num_frames=current_batch_size,
|
| 518 |
+
use_temporal_consistency=True
|
| 519 |
+
)
|
| 520 |
+
|
| 521 |
+
# Classifier-free guidance
|
| 522 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 523 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 524 |
+
|
| 525 |
+
# Scheduler step
|
| 526 |
+
batch_latents = self.scheduler.step(noise_pred, t, batch_latents).prev_sample
|
| 527 |
+
|
| 528 |
+
if callback:
|
| 529 |
+
callback(i, t, batch_latents)
|
| 530 |
+
|
| 531 |
+
# Update temporal buffer with generated batch
|
| 532 |
+
batch_images = self.decode_latents(batch_latents)
|
| 533 |
+
self.model.update_temporal_buffer(batch_latents, batch_images, current_batch_size)
|
| 534 |
+
|
| 535 |
+
# Add to results
|
| 536 |
+
for j in range(current_batch_size):
|
| 537 |
+
generated_frames.append(batch_latents[j:j+1])
|
| 538 |
+
|
| 539 |
+
frames_generated += current_batch_size
|
| 540 |
+
print(f"β
Generated {current_batch_size} frames")
|
| 541 |
+
|
| 542 |
+
return generated_frames
|
| 543 |
+
|
| 544 |
+
def generate_with_stepping_strategy(
|
| 545 |
+
self,
|
| 546 |
+
reference_image: Union[Image.Image, torch.Tensor],
|
| 547 |
+
prompt: str,
|
| 548 |
+
text_encoder,
|
| 549 |
+
tokenizer,
|
| 550 |
+
total_frames: int = 24,
|
| 551 |
+
stepping_pattern: List[int] = [1, 2, 3, 2, 1], # Variable batch sizes
|
| 552 |
+
**kwargs
|
| 553 |
+
) -> List[torch.Tensor]:
|
| 554 |
+
"""Generate with dynamic stepping pattern"""
|
| 555 |
+
|
| 556 |
+
all_frames = []
|
| 557 |
+
frames_generated = 0
|
| 558 |
+
step_idx = 0
|
| 559 |
+
|
| 560 |
+
while frames_generated < total_frames:
|
| 561 |
+
# Get current step size
|
| 562 |
+
current_step = stepping_pattern[step_idx % len(stepping_pattern)]
|
| 563 |
+
remaining = total_frames - frames_generated
|
| 564 |
+
actual_step = min(current_step, remaining)
|
| 565 |
+
|
| 566 |
+
print(f"π Step {step_idx + 1}: Generating {actual_step} frames")
|
| 567 |
+
|
| 568 |
+
# Generate batch
|
| 569 |
+
if frames_generated == 0:
|
| 570 |
+
# First generation includes reference
|
| 571 |
+
frames = self.generate_i2v_sequence(
|
| 572 |
+
reference_image=reference_image,
|
| 573 |
+
prompt=prompt,
|
| 574 |
+
text_encoder=text_encoder,
|
| 575 |
+
tokenizer=tokenizer,
|
| 576 |
+
num_frames=actual_step + 1, # +1 for reference
|
| 577 |
+
frames_per_batch=actual_step,
|
| 578 |
+
**kwargs
|
| 579 |
+
)
|
| 580 |
+
all_frames.extend(frames)
|
| 581 |
+
frames_generated += len(frames)
|
| 582 |
+
else:
|
| 583 |
+
# Continue from last frame
|
| 584 |
+
last_frame_latent = all_frames[-1]
|
| 585 |
+
last_frame_image = self.decode_latents(last_frame_latent)
|
| 586 |
+
|
| 587 |
+
frames = self.generate_i2v_sequence(
|
| 588 |
+
reference_image=last_frame_image,
|
| 589 |
+
prompt=prompt,
|
| 590 |
+
text_encoder=text_encoder,
|
| 591 |
+
tokenizer=tokenizer,
|
| 592 |
+
num_frames=actual_step + 1,
|
| 593 |
+
frames_per_batch=actual_step,
|
| 594 |
+
**kwargs
|
| 595 |
+
)
|
| 596 |
+
all_frames.extend(frames[1:]) # Skip reference (duplicate)
|
| 597 |
+
frames_generated += len(frames) - 1
|
| 598 |
+
|
| 599 |
+
step_idx += 1
|
| 600 |
+
|
| 601 |
+
return all_frames[:total_frames] # Ensure exact frame count
|
| 602 |
+
|
| 603 |
+
# Example usage
|
| 604 |
+
def example_usage():
|
| 605 |
+
"""Example of flexible I2V generation"""
|
| 606 |
+
|
| 607 |
+
# Load your models (example)
|
| 608 |
+
#
|
| 609 |
+
base_model, scheduler, vae, text_encoder, tokenizer = load_models()
|
| 610 |
+
|
| 611 |
+
# Create flexible I2V model
|
| 612 |
+
i2v_model = FlexibleI2VDiffuser(
|
| 613 |
+
base_diffusion_model=i2v_model,
|
| 614 |
+
feature_dim=512,
|
| 615 |
+
temporal_buffer_size=8,
|
| 616 |
+
max_batch_frames=3
|
| 617 |
+
)
|
| 618 |
+
|
| 619 |
+
# Create generator
|
| 620 |
+
generator = FlexibleI2VGenerator(
|
| 621 |
+
diffusion_model=i2v_model,
|
| 622 |
+
scheduler=scheduler,
|
| 623 |
+
vae=vae,
|
| 624 |
+
device="cuda"
|
| 625 |
+
)
|
| 626 |
+
|
| 627 |
+
# Load reference image
|
| 628 |
+
reference_image = Image.open("reference.jpg")
|
| 629 |
+
|
| 630 |
+
# Strategy 1: Fixed batch size
|
| 631 |
+
frames_fixed = generator.generate_i2v_sequence(
|
| 632 |
+
reference_image=reference_image,
|
| 633 |
+
prompt="A cat walking in a garden",
|
| 634 |
+
text_encoder=text_encoder,
|
| 635 |
+
tokenizer=tokenizer,
|
| 636 |
+
num_frames=16,
|
| 637 |
+
frames_per_batch=2, # Generate 2 frames at a time
|
| 638 |
+
num_inference_steps=20
|
| 639 |
+
)
|
| 640 |
+
|
| 641 |
+
# Strategy 2: Variable stepping pattern
|
| 642 |
+
frames_variable = generator.generate_with_stepping_strategy(
|
| 643 |
+
reference_image=reference_image,
|
| 644 |
+
prompt="A cat walking in a garden",
|
| 645 |
+
text_encoder=text_encoder,
|
| 646 |
+
tokenizer=tokenizer,
|
| 647 |
+
total_frames=24,
|
| 648 |
+
stepping_pattern=[1, 2, 3, 2, 1], # Start slow, ramp up, slow down
|
| 649 |
+
num_inference_steps=20
|
| 650 |
+
)
|
| 651 |
+
|
| 652 |
+
print(f"π Generated {len(frames_fixed)} frames with fixed batching")
|
| 653 |
+
print(f"π Generated {len(frames_variable)} frames with variable stepping")
|
| 654 |
+
|
| 655 |
+
if __name__ == "__main__":
|
| 656 |
+
example_usage()
|