Spaces:
Runtime error
Runtime error
Create app_3.py
Browse files
app_3.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from diffusers import AnimateDiffSparseControlNetPipeline
|
| 3 |
+
from diffusers.models import AutoencoderKL, MotionAdapter, SparseControlNetModel
|
| 4 |
+
from diffusers.schedulers import DPMSolverMultistepScheduler
|
| 5 |
+
from diffusers.utils import export_to_gif, load_image
|
| 6 |
+
|
| 7 |
+
torch.backends.cuda.matmul.allow_tf32 = True # Enable TF32 for speed
|
| 8 |
+
device = "cuda"
|
| 9 |
+
dtype = torch.float16
|
| 10 |
+
|
| 11 |
+
# Model IDs
|
| 12 |
+
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
|
| 13 |
+
motion_adapter_id = "guoyww/animatediff-motion-adapter-v1-5-3"
|
| 14 |
+
controlnet_id = "guoyww/animatediff-sparsectrl-scribble"
|
| 15 |
+
lora_adapter_id = "guoyww/animatediff-motion-lora-v1-5-3"
|
| 16 |
+
vae_id = "stabilityai/sd-vae-ft-mse"
|
| 17 |
+
|
| 18 |
+
# Load models to device once
|
| 19 |
+
motion_adapter = MotionAdapter.from_pretrained(motion_adapter_id, torch_dtype=dtype, device_map="auto")
|
| 20 |
+
controlnet = SparseControlNetModel.from_pretrained(controlnet_id, torch_dtype=dtype, device_map="auto")
|
| 21 |
+
vae = AutoencoderKL.from_pretrained(vae_id, torch_dtype=dtype, device_map="auto")
|
| 22 |
+
|
| 23 |
+
# Use DPMSolverMultistepScheduler with optimizations
|
| 24 |
+
scheduler = DPMSolverMultistepScheduler.from_pretrained(
|
| 25 |
+
model_id, subfolder="scheduler", beta_schedule="linear",
|
| 26 |
+
algorithm_type="dpmsolver++", use_karras_sigmas=True,
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
pipe = AnimateDiffSparseControlNetPipeline.from_pretrained(
|
| 30 |
+
model_id, motion_adapter=motion_adapter, controlnet=controlnet,
|
| 31 |
+
vae=vae, scheduler=scheduler, torch_dtype=dtype,
|
| 32 |
+
).to(device)
|
| 33 |
+
|
| 34 |
+
# Enable memory optimizations
|
| 35 |
+
pipe.enable_xformers_memory_efficient_attention()
|
| 36 |
+
pipe.load_lora_weights(lora_adapter_id, adapter_name="motion_lora")
|
| 37 |
+
pipe.fuse_lora(lora_scale=1.0)
|
| 38 |
+
|
| 39 |
+
# Preload conditioning frames
|
| 40 |
+
image_files = [
|
| 41 |
+
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-1.png",
|
| 42 |
+
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-2.png",
|
| 43 |
+
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-3.png"
|
| 44 |
+
]
|
| 45 |
+
condition_frame_indices = [0, 8, 15]
|
| 46 |
+
conditioning_frames = [load_image(img) for img in image_files]
|
| 47 |
+
|
| 48 |
+
# Generator for reproducibility
|
| 49 |
+
generator = torch.Generator(device).manual_seed(1337)
|
| 50 |
+
|
| 51 |
+
# Inference with memory optimizations
|
| 52 |
+
with torch.inference_mode():
|
| 53 |
+
video = pipe(
|
| 54 |
+
prompt="an aerial view of a cyberpunk city, night time, neon lights, masterpiece, high quality",
|
| 55 |
+
negative_prompt="low quality, worst quality, letterboxed",
|
| 56 |
+
num_inference_steps=25,
|
| 57 |
+
conditioning_frames=conditioning_frames,
|
| 58 |
+
controlnet_conditioning_scale=1.0,
|
| 59 |
+
controlnet_frame_indices=condition_frame_indices,
|
| 60 |
+
generator=generator,
|
| 61 |
+
).frames[0]
|
| 62 |
+
|
| 63 |
+
export_to_gif(video, "output.gif")
|
| 64 |
+
|
| 65 |
+
# Free memory
|
| 66 |
+
del pipe, motion_adapter, controlnet, vae
|
| 67 |
+
torch.cuda.empty_cache()
|