Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
| 3 |
import os
|
| 4 |
auth_token = os.environ.get("HUGGING_FACE_HUB_TOKEN")
|
| 5 |
from unsloth import FastLanguageModel
|
|
@@ -29,6 +30,26 @@ From the given email, extract the following key values. The keys are explained b
|
|
| 29 |
"""
|
| 30 |
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
# Define the function for generating output based on input
|
| 33 |
def generate_output(input_text,model):
|
| 34 |
# Prompt for the instruction
|
|
@@ -59,7 +80,8 @@ def generate_output(input_text,model):
|
|
| 59 |
# Generate outputs
|
| 60 |
outputs = model.generate(**inputs, max_new_tokens=2048, use_cache=True)
|
| 61 |
output = tokenizer.batch_decode(outputs)
|
| 62 |
-
|
|
|
|
| 63 |
|
| 64 |
|
| 65 |
model_options = ["sxandie/llama_3_8b_4bitQ","DataIntelligenceTeam/NER-Phi-3-mini-4k-instruct"]
|
|
@@ -68,10 +90,15 @@ inputs = [
|
|
| 68 |
gr.inputs.Dropdown(label="Model", choices=model_options, default=model_options[0])
|
| 69 |
]
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
# Create Gradio interface
|
| 72 |
iface = gr.Interface(fn=generate_output,
|
| 73 |
inputs=inputs,
|
| 74 |
-
outputs=
|
| 75 |
title="Email Information Extraction",
|
| 76 |
description="Extract key information from the provided email.")
|
| 77 |
iface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
import re
|
| 4 |
import os
|
| 5 |
auth_token = os.environ.get("HUGGING_FACE_HUB_TOKEN")
|
| 6 |
from unsloth import FastLanguageModel
|
|
|
|
| 30 |
"""
|
| 31 |
|
| 32 |
|
| 33 |
+
|
| 34 |
+
def process_output(output):
|
| 35 |
+
"""
|
| 36 |
+
Process the output to extract the response.
|
| 37 |
+
"""
|
| 38 |
+
# Define the regex pattern
|
| 39 |
+
pattern = r'### Response:\n?(.*?)<\|endoftext\|>'
|
| 40 |
+
# Search for the pattern in the output
|
| 41 |
+
match = re.search(pattern, output, re.DOTALL)
|
| 42 |
+
|
| 43 |
+
if match:
|
| 44 |
+
# Extract the response
|
| 45 |
+
response = match.group(1)
|
| 46 |
+
# Remove specified symbols
|
| 47 |
+
cleaned_str = re.sub(r'\\n|\\\\|\\\'', '', response)
|
| 48 |
+
return cleaned_str
|
| 49 |
+
else:
|
| 50 |
+
return output
|
| 51 |
+
|
| 52 |
+
|
| 53 |
# Define the function for generating output based on input
|
| 54 |
def generate_output(input_text,model):
|
| 55 |
# Prompt for the instruction
|
|
|
|
| 80 |
# Generate outputs
|
| 81 |
outputs = model.generate(**inputs, max_new_tokens=2048, use_cache=True)
|
| 82 |
output = tokenizer.batch_decode(outputs)
|
| 83 |
+
cleaned_response = process_output(output)
|
| 84 |
+
return output,cleaned_response
|
| 85 |
|
| 86 |
|
| 87 |
model_options = ["sxandie/llama_3_8b_4bitQ","DataIntelligenceTeam/NER-Phi-3-mini-4k-instruct"]
|
|
|
|
| 90 |
gr.inputs.Dropdown(label="Model", choices=model_options, default=model_options[0])
|
| 91 |
]
|
| 92 |
|
| 93 |
+
outputs = [
|
| 94 |
+
gr.outputs.Textbox(label="Original Output Text"),
|
| 95 |
+
gr.outputs.Textbox(label="Formatted JSON")
|
| 96 |
+
]
|
| 97 |
+
|
| 98 |
# Create Gradio interface
|
| 99 |
iface = gr.Interface(fn=generate_output,
|
| 100 |
inputs=inputs,
|
| 101 |
+
outputs= outputs,
|
| 102 |
title="Email Information Extraction",
|
| 103 |
description="Extract key information from the provided email.")
|
| 104 |
iface.launch()
|