Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
from transformers import CLIPImageProcessor, CLIPVisionModel
|
| 8 |
+
from diffusers import AutoencoderKL, DDPMScheduler
|
| 9 |
+
from src.diffusers.models.referencenet.referencenet_unet_2d_condition import (
|
| 10 |
+
ReferenceNetModel,
|
| 11 |
+
)
|
| 12 |
+
from src.diffusers.models.referencenet.unet_2d_condition import UNet2DConditionModel
|
| 13 |
+
from src.diffusers.pipelines.referencenet.pipeline_referencenet import (
|
| 14 |
+
StableDiffusionReferenceNetPipeline,
|
| 15 |
+
)
|
| 16 |
+
from utils.anonymize_faces_in_image import anonymize_faces_in_image
|
| 17 |
+
import face_alignment
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def load_pipeline():
|
| 24 |
+
face_model_id = "hkung/face-anon-simple"
|
| 25 |
+
clip_model_id = "openai/clip-vit-large-patch14"
|
| 26 |
+
sd_model_id = "stabilityai/stable-diffusion-2-1"
|
| 27 |
+
|
| 28 |
+
unet = UNet2DConditionModel.from_pretrained(
|
| 29 |
+
face_model_id, subfolder="unet", use_safetensors=True
|
| 30 |
+
)
|
| 31 |
+
referencenet = ReferenceNetModel.from_pretrained(
|
| 32 |
+
face_model_id, subfolder="referencenet", use_safetensors=True
|
| 33 |
+
)
|
| 34 |
+
conditioning_referencenet = ReferenceNetModel.from_pretrained(
|
| 35 |
+
face_model_id, subfolder="conditioning_referencenet", use_safetensors=True
|
| 36 |
+
)
|
| 37 |
+
vae = AutoencoderKL.from_pretrained(
|
| 38 |
+
sd_model_id, subfolder="vae", use_safetensors=True
|
| 39 |
+
)
|
| 40 |
+
scheduler = DDPMScheduler.from_pretrained(
|
| 41 |
+
sd_model_id, subfolder="scheduler", use_safetensors=True
|
| 42 |
+
)
|
| 43 |
+
feature_extractor = CLIPImageProcessor.from_pretrained(
|
| 44 |
+
clip_model_id, use_safetensors=True
|
| 45 |
+
)
|
| 46 |
+
image_encoder = CLIPVisionModel.from_pretrained(
|
| 47 |
+
clip_model_id, use_safetensors=True
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
pipe = StableDiffusionReferenceNetPipeline(
|
| 51 |
+
unet=unet,
|
| 52 |
+
referencenet=referencenet,
|
| 53 |
+
conditioning_referencenet=conditioning_referencenet,
|
| 54 |
+
vae=vae,
|
| 55 |
+
feature_extractor=feature_extractor,
|
| 56 |
+
image_encoder=image_encoder,
|
| 57 |
+
scheduler=scheduler,
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
pipe = pipe.to(DEVICE)
|
| 61 |
+
return pipe
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
# Load heavy stuff once at startup (better UX + energy-wise)
|
| 65 |
+
pipe = load_pipeline()
|
| 66 |
+
generator = torch.manual_seed(1)
|
| 67 |
+
|
| 68 |
+
fa = face_alignment.FaceAlignment(
|
| 69 |
+
face_alignment.LandmarksType.TWO_D,
|
| 70 |
+
face_detector="sfd",
|
| 71 |
+
device=DEVICE,
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def anonymize(
|
| 76 |
+
image: np.ndarray,
|
| 77 |
+
anonymization_degree: float = 1.25,
|
| 78 |
+
num_inference_steps: int = 25,
|
| 79 |
+
guidance_scale: float = 4.0,
|
| 80 |
+
):
|
| 81 |
+
"""
|
| 82 |
+
Gradio callback: takes an RGB numpy image and returns anonymized PIL image.
|
| 83 |
+
"""
|
| 84 |
+
|
| 85 |
+
if image is None:
|
| 86 |
+
return None
|
| 87 |
+
|
| 88 |
+
pil_image = Image.fromarray(image)
|
| 89 |
+
|
| 90 |
+
anon_image = anonymize_faces_in_image(
|
| 91 |
+
image=pil_image,
|
| 92 |
+
face_alignment=fa,
|
| 93 |
+
pipe=pipe,
|
| 94 |
+
generator=generator,
|
| 95 |
+
face_image_size=512,
|
| 96 |
+
num_inference_steps=int(num_inference_steps),
|
| 97 |
+
guidance_scale=float(guidance_scale),
|
| 98 |
+
anonymization_degree=float(anonymization_degree),
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
return anon_image
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
demo = gr.Interface(
|
| 105 |
+
fn=anonymize,
|
| 106 |
+
inputs=[
|
| 107 |
+
gr.Image(type="numpy", label="Input image"),
|
| 108 |
+
gr.Slider(
|
| 109 |
+
minimum=0.5,
|
| 110 |
+
maximum=2.0,
|
| 111 |
+
step=0.05,
|
| 112 |
+
value=1.25,
|
| 113 |
+
label="Anonymization strength",
|
| 114 |
+
),
|
| 115 |
+
gr.Slider(
|
| 116 |
+
minimum=10,
|
| 117 |
+
maximum=50,
|
| 118 |
+
step=1,
|
| 119 |
+
value=25,
|
| 120 |
+
label="Diffusion steps (speed vs quality)",
|
| 121 |
+
),
|
| 122 |
+
gr.Slider(
|
| 123 |
+
minimum=1.0,
|
| 124 |
+
maximum=10.0,
|
| 125 |
+
step=0.1,
|
| 126 |
+
value=4.0,
|
| 127 |
+
label="Guidance scale",
|
| 128 |
+
),
|
| 129 |
+
],
|
| 130 |
+
outputs=gr.Image(type="pil", label="Anonymized image"),
|
| 131 |
+
title="Face Anonymization Made Simple",
|
| 132 |
+
description=(
|
| 133 |
+
"Upload a photo and anonymize all faces using the WACV 2025 "
|
| 134 |
+
"\"Face Anonymization Made Simple\" model."
|
| 135 |
+
),
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
if __name__ == "__main__":
|
| 140 |
+
demo.launch()
|