Spaces:
Runtime error
Runtime error
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| from typing import List, Optional, Union | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| from transformers import CLIPImageProcessor, CLIPVisionModel | |
| from ...image_processor import PipelineImageInput, VaeImageProcessor | |
| from ...models import AutoencoderKL | |
| from ...schedulers import KarrasDiffusionSchedulers | |
| from ...utils import ( | |
| logging, | |
| replace_example_docstring, | |
| ) | |
| from ...utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor | |
| from diffusers import DiffusionPipeline | |
| from ..stable_diffusion.pipeline_output import StableDiffusionPipelineOutput | |
| from ...models.referencenet.unet_2d_condition import UNet2DConditionModel | |
| from ...models.referencenet.referencenet_unet_2d_condition import ReferenceNetModel | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> # !pip install opencv-python transformers accelerate | |
| >>> from diffusers import StableDiffusionReferenceNetPipeline, ControlNetModel, UniPCMultistepScheduler | |
| >>> from diffusers.utils import load_image | |
| >>> import numpy as np | |
| >>> import torch | |
| >>> import cv2 | |
| >>> from PIL import Image | |
| >>> # download an image | |
| >>> image = load_image( | |
| ... "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png" | |
| ... ) | |
| >>> image = np.array(image) | |
| >>> # get canny image | |
| >>> image = cv2.Canny(image, 100, 200) | |
| >>> image = image[:, :, None] | |
| >>> image = np.concatenate([image, image, image], axis=2) | |
| >>> canny_image = Image.fromarray(image) | |
| >>> # load control net and stable diffusion v1-5 | |
| >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16) | |
| >>> pipe = StableDiffusionReferenceNetPipeline.from_pretrained( | |
| ... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 | |
| ... ) | |
| >>> # speed up diffusion process with faster scheduler and memory optimization | |
| >>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
| >>> # remove following line if xformers is not installed | |
| >>> pipe.enable_xformers_memory_efficient_attention() | |
| >>> pipe.enable_model_cpu_offload() | |
| >>> # generate image | |
| >>> generator = torch.manual_seed(0) | |
| >>> image = pipe( | |
| ... "futuristic-looking woman", num_inference_steps=20, generator=generator, image=canny_image | |
| ... ).images[0] | |
| ``` | |
| """ | |
| def cat_referencenet_states(states1, states2, dim=0): | |
| concatenated_states = [] | |
| for i in range(len(states1)): | |
| # unet down x 3; mid x 1; up x 3 | |
| unet_blocks = [] | |
| for j in range(len(states1[i])): | |
| # cross attention down x 2; mid x 1; up x 2 | |
| cross_attn_blocks = [] | |
| for k in range(len(states1[i][j])): | |
| concatenated_cross_attn_blocks = torch.cat([states1[i][j][k], states2[i][j][k]], dim=dim) | |
| cross_attn_blocks.append(concatenated_cross_attn_blocks) | |
| unet_blocks.append(cross_attn_blocks) | |
| concatenated_states.append(unet_blocks) | |
| return concatenated_states | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| **kwargs, | |
| ): | |
| """ | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, | |
| `timesteps` must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default | |
| timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` | |
| must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class StableDiffusionReferenceNetPipeline(DiffusionPipeline): | |
| r""" | |
| Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
| implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
| The pipeline also inherits the following loading methods: | |
| - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings | |
| - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights | |
| - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights | |
| - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. | |
| unet ([`UNet2DConditionModel`]): | |
| A `UNet2DConditionModel` to denoise the encoded image latents. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
| [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
| safety_checker ([`StableDiffusionSafetyChecker`]): | |
| Classification module that estimates whether generated images could be considered offensive or harmful. | |
| Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details | |
| about a model's potential harms. | |
| feature_extractor ([`~transformers.CLIPImageProcessor`]): | |
| A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. | |
| """ | |
| model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" | |
| _optional_components = ["safety_checker", "feature_extractor", "image_encoder"] | |
| _exclude_from_cpu_offload = ["safety_checker"] | |
| _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| unet: UNet2DConditionModel, | |
| referencenet: ReferenceNetModel, | |
| conditioning_referencenet: ReferenceNetModel, | |
| scheduler: KarrasDiffusionSchedulers, | |
| feature_extractor: CLIPImageProcessor, | |
| image_encoder: CLIPVisionModel, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| unet=unet, | |
| referencenet=referencenet, | |
| conditioning_referencenet=conditioning_referencenet, | |
| scheduler=scheduler, | |
| feature_extractor=feature_extractor, | |
| image_encoder=image_encoder, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor_do_normalize = VaeImageProcessor( | |
| vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True | |
| ) | |
| self.image_processor = VaeImageProcessor( | |
| vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False | |
| ) | |
| def check_inputs( | |
| self, | |
| source_image, | |
| conditioning_image, | |
| control_guidance_start=0.0, | |
| control_guidance_end=1.0, | |
| ): | |
| # Check `image` | |
| if isinstance(self.referencenet, ReferenceNetModel): | |
| self.check_image(source_image, conditioning_image) | |
| else: | |
| assert False | |
| if not isinstance(control_guidance_start, (tuple, list)): | |
| control_guidance_start = [control_guidance_start] | |
| if not isinstance(control_guidance_end, (tuple, list)): | |
| control_guidance_end = [control_guidance_end] | |
| if len(control_guidance_start) != len(control_guidance_end): | |
| raise ValueError( | |
| f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list." | |
| ) | |
| for start, end in zip(control_guidance_start, control_guidance_end): | |
| if start >= end: | |
| raise ValueError( | |
| f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." | |
| ) | |
| if start < 0.0: | |
| raise ValueError(f"control guidance start: {start} can't be smaller than 0.") | |
| if end > 1.0: | |
| raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") | |
| def check_image(self, source_image, conditioning_image): | |
| image_batch_size = None | |
| for image in [source_image, conditioning_image]: | |
| image_is_pil = isinstance(image, PIL.Image.Image) | |
| image_is_tensor = isinstance(image, torch.Tensor) | |
| image_is_np = isinstance(image, np.ndarray) | |
| image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) | |
| image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) | |
| image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) | |
| if ( | |
| not image_is_pil | |
| and not image_is_tensor | |
| and not image_is_np | |
| and not image_is_pil_list | |
| and not image_is_tensor_list | |
| and not image_is_np_list | |
| ): | |
| raise TypeError( | |
| f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" | |
| ) | |
| if not image_batch_size: | |
| if image_is_pil: | |
| image_batch_size = 1 | |
| else: | |
| image_batch_size = len(image) | |
| else: | |
| if image_is_pil: | |
| if image_batch_size != 1: | |
| raise ValueError( | |
| f"Source image batch size must be same as conditioning image batch size. source image batch size: {image_batch_size}, conditioning image batch size: 1" | |
| ) | |
| elif image_batch_size != len(image): | |
| raise ValueError( | |
| f"Source image batch size must be same as conditioning image batch size. source image batch size: {image_batch_size}, conditioning image batch size: {len(image)}" | |
| ) | |
| def prepare_referencenet_input( | |
| self, | |
| image, | |
| width, | |
| height, | |
| device, | |
| dtype, | |
| do_classifier_free_guidance=False, | |
| is_null_conditioning=False, | |
| do_anonymization=False, | |
| ): | |
| init_image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) | |
| init_image = init_image.to(device=device, dtype=dtype) | |
| normalized_image = self.image_processor_do_normalize.preprocess(image, height=height, width=width).to( | |
| device=device, dtype=dtype | |
| ) | |
| features = self.feature_extractor(images=init_image, do_rescale=False, return_tensors="pt").pixel_values.to( | |
| device=device | |
| ) | |
| image_embeds = self.image_encoder(features).pooler_output.unsqueeze(1) | |
| latents = self.vae.encode(normalized_image).latent_dist.sample() | |
| latents = latents * self.vae.config.scaling_factor | |
| if do_classifier_free_guidance or do_anonymization: | |
| if is_null_conditioning: | |
| latents = torch.cat([torch.zeros_like(latents), latents]) | |
| image_embeds = torch.cat([torch.zeros_like(image_embeds), image_embeds]) | |
| else: | |
| latents = torch.cat([latents] * 2) | |
| image_embeds = torch.cat([image_embeds] * 2) | |
| return init_image, latents, image_embeds | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
| def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator): | |
| shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding | |
| def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): | |
| """ | |
| See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 | |
| Args: | |
| timesteps (`torch.Tensor`): | |
| generate embedding vectors at these timesteps | |
| embedding_dim (`int`, *optional*, defaults to 512): | |
| dimension of the embeddings to generate | |
| dtype: | |
| data type of the generated embeddings | |
| Returns: | |
| `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)` | |
| """ | |
| assert len(w.shape) == 1 | |
| w = w * 1000.0 | |
| half_dim = embedding_dim // 2 | |
| emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) | |
| emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) | |
| emb = w.to(dtype)[:, None] * emb[None, :] | |
| emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
| if embedding_dim % 2 == 1: # zero pad | |
| emb = torch.nn.functional.pad(emb, (0, 1)) | |
| assert emb.shape == (w.shape[0], embedding_dim) | |
| return emb | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def anonymization_degree(self): | |
| return self._anonymization_degree | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| def do_classifier_free_guidance(self): | |
| return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None | |
| def do_anonymization(self): | |
| return self._anonymization_degree > 0 | |
| def __call__( | |
| self, | |
| source_image: Union[PipelineImageInput, List[PipelineImageInput]] = None, | |
| conditioning_image: Union[PipelineImageInput, List[PipelineImageInput]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| timesteps: List[int] = None, | |
| guidance_scale: float = 2.5, | |
| latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| anonymization_degree: float = 0.0, | |
| **kwargs, | |
| ): | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| conditioning_image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: | |
| `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): | |
| The ControlNet input condition to provide guidance to the `unet` for generation. If the type is | |
| specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be | |
| accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height | |
| and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in | |
| `init`, images must be passed as a list such that each element of the list can be correctly batched for | |
| input to a single ControlNet. | |
| height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
| in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
| passed will be used. Must be in descending order. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| A higher guidance scale value encourages the model to generate images closely linked to the text | |
| `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor is generated by sampling using the supplied random `generator`. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| anonymization_degree (`float`, *optional*, defaults to 0.0): | |
| Increasing the anonymization scale value encourages the model to produce images that diverge significantly | |
| from the conditioning image. | |
| Examples: | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
| otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
| second element is a list of `bool`s indicating whether the corresponding generated image contains | |
| "not-safe-for-work" (nsfw) content. | |
| """ | |
| referencenet = self.referencenet | |
| conditioning_referencenet = self.conditioning_referencenet | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| source_image=source_image, | |
| conditioning_image=conditioning_image, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._anonymization_degree = anonymization_degree | |
| # 2. Define call parameters | |
| image_is_pil = isinstance(source_image, PIL.Image.Image) | |
| if image_is_pil: | |
| batch_size = 1 | |
| else: | |
| batch_size = len(source_image) | |
| device = self._execution_device | |
| # 4. Prepare image | |
| if isinstance(referencenet, ReferenceNetModel) and isinstance(conditioning_referencenet, ReferenceNetModel): | |
| if self.do_anonymization: | |
| source_image, source_latents, source_image_embeds = self.prepare_referencenet_input( | |
| image=conditioning_image, | |
| width=width, | |
| height=height, | |
| device=device, | |
| dtype=referencenet.dtype, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| is_null_conditioning=True, | |
| do_anonymization=True, | |
| ) | |
| else: | |
| source_image, source_latents, source_image_embeds = self.prepare_referencenet_input( | |
| image=source_image, | |
| width=width, | |
| height=height, | |
| device=device, | |
| dtype=referencenet.dtype, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| is_null_conditioning=True, | |
| do_anonymization=False, | |
| ) | |
| conditioning_image, conditioning_latents, conditioning_image_embeds = self.prepare_referencenet_input( | |
| image=conditioning_image, | |
| width=width, | |
| height=height, | |
| device=device, | |
| dtype=referencenet.dtype, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| is_null_conditioning=False, | |
| do_anonymization=self.do_anonymization, | |
| ) | |
| height, width = conditioning_image.shape[-2:] | |
| else: | |
| assert False | |
| # 5. Prepare timesteps | |
| timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | |
| self._num_timesteps = len(timesteps) | |
| # 6. Prepare latent variables | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size=batch_size, | |
| num_channels_latents=num_channels_latents, | |
| height=height, | |
| width=width, | |
| dtype=self.image_encoder.dtype, | |
| device=device, | |
| generator=generator, | |
| ) | |
| # 8. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| is_unet_compiled = is_compiled_module(self.unet) | |
| is_referencenet_compiled = is_compiled_module(self.referencenet) | |
| is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1") | |
| if self.do_anonymization: | |
| source_image_embeds = self.nullify_image_embeds(source_image_embeds, self.anonymization_degree) | |
| referencenet_sample, referencenet_states = referencenet( | |
| sample=source_latents, | |
| timestep=0, | |
| encoder_hidden_states=source_image_embeds, | |
| return_dict=False, | |
| ) | |
| if self.do_anonymization: | |
| referencenet_states = self.nullify_referencenet_states(referencenet_states, self.anonymization_degree) | |
| conditioning_referencenet_sample, conditioning_referencenet_states = conditioning_referencenet( | |
| sample=conditioning_latents, | |
| timestep=0, | |
| encoder_hidden_states=conditioning_image_embeds, | |
| return_dict=False, | |
| ) | |
| concatenated_embeds = torch.cat([source_image_embeds, conditioning_image_embeds], dim=1) | |
| concatenated_referencenet_states = cat_referencenet_states( | |
| referencenet_states, conditioning_referencenet_states, dim=1 | |
| ) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # Relevant thread: | |
| # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428 | |
| if (is_unet_compiled and is_referencenet_compiled) and is_torch_higher_equal_2_1: | |
| torch._inductor.cudagraph_mark_step_begin() | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = ( | |
| torch.cat([latents] * 2) if self.do_classifier_free_guidance or self.do_anonymization else latents | |
| ) | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| sample=latent_model_input, | |
| timestep=t, | |
| encoder_hidden_states=concatenated_embeds, | |
| referencenet_states=concatenated_referencenet_states, | |
| return_dict=False, | |
| )[0] | |
| if self.do_anonymization: | |
| uncond_noise_pred, cond_noise_pred = noise_pred.chunk(2) | |
| if self.do_classifier_free_guidance: | |
| noise_pred = ( | |
| 1 - self.guidance_scale | |
| ) * uncond_noise_pred + self.guidance_scale * cond_noise_pred | |
| else: | |
| noise_pred = cond_noise_pred | |
| elif self.do_classifier_free_guidance: | |
| # perform guidance | |
| uncond_noise_pred, cond_noise_pred = noise_pred.chunk(2) | |
| noise_pred = (1 - self.guidance_scale) * uncond_noise_pred + self.guidance_scale * cond_noise_pred | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| # If we do sequential model offloading, let's offload unet and referencenet | |
| # manually for max memory savings | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.unet.to("cpu") | |
| self.referencenet.to("cpu") | |
| self.conditioning_referencenet.to("cpu") | |
| torch.cuda.empty_cache() | |
| image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] | |
| do_denormalize = [True] * image.shape[0] | |
| image = self.image_processor_do_normalize.postprocess( | |
| image, output_type=output_type, do_denormalize=do_denormalize | |
| ) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return StableDiffusionPipelineOutput( | |
| images=image, | |
| nsfw_content_detected=None, | |
| ) | |
| def nullify_referencenet_states(self, referencenet_states, anonymization_degree): | |
| new_referencenet_states = [] | |
| for i in range(len(referencenet_states)): | |
| unet_blocks = [] | |
| for j in range(len(referencenet_states[i])): | |
| cross_attn_blocks = [] | |
| for k in range(len(referencenet_states[i][j])): | |
| # Split the tensor along the first dimension | |
| split_tensors = torch.chunk(referencenet_states[i][j][k], chunks=2, dim=0) | |
| # Select the first half of the split tensors | |
| first_half_tensor = split_tensors[0] | |
| # Select the second half of the split tensors | |
| second_half_tensor = split_tensors[1] | |
| # Nullify the second half of the split tensors | |
| second_half_tensor = ( | |
| second_half_tensor * (1 - anonymization_degree) + first_half_tensor * anonymization_degree | |
| ) | |
| # Concatenate the tensors along the first dimension | |
| concatenated_tensor = torch.cat((first_half_tensor, second_half_tensor), dim=0) | |
| cross_attn_blocks.append(concatenated_tensor) | |
| unet_blocks.append(tuple(cross_attn_blocks)) | |
| new_referencenet_states.append(unet_blocks) | |
| return new_referencenet_states | |
| def nullify_image_embeds(self, image_embed, anonymization_degree): | |
| # Split the tensor along the first dimension | |
| split_tensors = torch.chunk(image_embed, chunks=2, dim=0) | |
| # Select the first half of the split tensors | |
| first_half_tensor = split_tensors[0] | |
| # Select the second half of the split tensors | |
| second_half_tensor = split_tensors[1] | |
| # Nullify the second half of the split tensors | |
| second_half_tensor = second_half_tensor * (1 - anonymization_degree) | |
| # Concatenate the tensors along the first dimension | |
| new_image_embed = torch.cat((first_half_tensor, second_half_tensor), dim=0) | |
| return new_image_embed | |