Update app.py
Browse files
app.py
CHANGED
|
@@ -93,7 +93,7 @@ face_clip_model.to(device, dtype=dtype)
|
|
| 93 |
face_helper.face_det.to(device)
|
| 94 |
face_helper.face_parse.to(device)
|
| 95 |
transformer.to(device, dtype=dtype)
|
| 96 |
-
free_memory()
|
| 97 |
|
| 98 |
pipe = ConsisIDPipeline.from_pretrained(model_path, transformer=transformer, scheduler=scheduler, torch_dtype=dtype)
|
| 99 |
# If you're using with lora, add this code
|
|
@@ -140,49 +140,60 @@ def delete_old_files():
|
|
| 140 |
os.remove(file_path)
|
| 141 |
time.sleep(600)
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
scale_status,
|
| 151 |
-
rife_status,
|
| 152 |
-
progress=gr.Progress(track_tqdm=True)
|
| 153 |
):
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
seed = random.randint(0, 2**8 - 1)
|
| 157 |
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
eva_transform_mean, eva_transform_std,
|
| 162 |
face_main_model, device, dtype, id_image,
|
| 163 |
original_id_image=id_image, is_align_face=True,
|
| 164 |
cal_uncond=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
-
|
| 167 |
-
kps_cond = face_kps
|
| 168 |
-
else:
|
| 169 |
-
kps_cond = None
|
| 170 |
-
|
| 171 |
-
tensor = align_crop_face_image.cpu().detach()
|
| 172 |
-
tensor = tensor.squeeze()
|
| 173 |
-
tensor = tensor.permute(1, 2, 0)
|
| 174 |
-
tensor = tensor.numpy() * 255
|
| 175 |
-
tensor = tensor.astype(np.uint8)
|
| 176 |
-
image = ImageOps.exif_transpose(Image.fromarray(tensor))
|
| 177 |
-
|
| 178 |
-
prompt = prompt.strip('"')
|
| 179 |
|
| 180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
|
|
|
| 186 |
|
| 187 |
latents, seed = infer(prompt,image_input,num_inference_steps=4,guidance_scale=7.0,seed=seed_value,progress=progress,)
|
| 188 |
if scale_status:
|
|
|
|
| 93 |
face_helper.face_det.to(device)
|
| 94 |
face_helper.face_parse.to(device)
|
| 95 |
transformer.to(device, dtype=dtype)
|
| 96 |
+
##free_memory()
|
| 97 |
|
| 98 |
pipe = ConsisIDPipeline.from_pretrained(model_path, transformer=transformer, scheduler=scheduler, torch_dtype=dtype)
|
| 99 |
# If you're using with lora, add this code
|
|
|
|
| 140 |
os.remove(file_path)
|
| 141 |
time.sleep(600)
|
| 142 |
|
| 143 |
+
def infer(
|
| 144 |
+
prompt: str,
|
| 145 |
+
image_input: str,
|
| 146 |
+
num_inference_steps: int,
|
| 147 |
+
guidance_scale: float,
|
| 148 |
+
seed: int = 42,
|
| 149 |
+
progress=gr.Progress(track_tqdm=True),
|
|
|
|
|
|
|
|
|
|
| 150 |
):
|
| 151 |
+
if seed == -1:
|
| 152 |
+
seed = random.randint(0, 2**8 - 1)
|
|
|
|
| 153 |
|
| 154 |
+
id_image = np.array(ImageOps.exif_transpose(Image.fromarray(image_input)).convert("RGB"))
|
| 155 |
+
id_image = resize_numpy_image_long(id_image, 1024)
|
| 156 |
+
id_cond, id_vit_hidden, align_crop_face_image, face_kps = process_face_embeddings(face_helper, face_clip_model, handler_ante,
|
| 157 |
eva_transform_mean, eva_transform_std,
|
| 158 |
face_main_model, device, dtype, id_image,
|
| 159 |
original_id_image=id_image, is_align_face=True,
|
| 160 |
cal_uncond=False)
|
| 161 |
+
if is_kps:
|
| 162 |
+
kps_cond = face_kps
|
| 163 |
+
else:
|
| 164 |
+
kps_cond = None
|
| 165 |
+
|
| 166 |
+
tensor = align_crop_face_image.cpu().detach()
|
| 167 |
+
tensor = tensor.squeeze()
|
| 168 |
+
tensor = tensor.permute(1, 2, 0)
|
| 169 |
+
tensor = tensor.numpy() * 255
|
| 170 |
+
tensor = tensor.astype(np.uint8)
|
| 171 |
+
image = ImageOps.exif_transpose(Image.fromarray(tensor))
|
| 172 |
+
|
| 173 |
+
prompt = prompt.strip('"')
|
| 174 |
|
| 175 |
+
generator = torch.Generator(device).manual_seed(seed) if seed else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
+
video_pt = pipe(
|
| 178 |
+
prompt=prompt,
|
| 179 |
+
image=image,
|
| 180 |
+
num_videos_per_prompt=1,
|
| 181 |
+
num_inference_steps=num_inference_steps,
|
| 182 |
+
num_frames=49,
|
| 183 |
+
use_dynamic_cfg=False,
|
| 184 |
+
guidance_scale=guidance_scale,
|
| 185 |
+
generator=generator,
|
| 186 |
+
id_vit_hidden=id_vit_hidden,
|
| 187 |
+
id_cond=id_cond,
|
| 188 |
+
kps_cond=kps_cond,
|
| 189 |
+
output_type="pt",
|
| 190 |
+
).frames
|
| 191 |
|
| 192 |
+
##free_memory()
|
| 193 |
+
return video_pt, seed
|
| 194 |
+
##threading.Thread(target=delete_old_files, daemon=True).start()
|
| 195 |
+
@spaces.GPU(duration=70)
|
| 196 |
+
def generate(prompt,image_input,seed_value,scale_status,rife_status,progress=gr.Progress(track_tqdm=True)):
|
| 197 |
|
| 198 |
latents, seed = infer(prompt,image_input,num_inference_steps=4,guidance_scale=7.0,seed=seed_value,progress=progress,)
|
| 199 |
if scale_status:
|