Spaces:
Sleeping
Sleeping
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| from functools import partial | |
| from pathlib import Path | |
| import urllib.request | |
| import torch | |
| from .modeling import ( | |
| ImageEncoderViT, | |
| MaskDecoder, | |
| PromptEncoder, | |
| Sam, | |
| TwoWayTransformer, | |
| ) | |
| import numpy as np | |
| from .modeling.image_encoder_swin import SwinTransformer | |
| from monai.networks.nets import ViT | |
| from monai.networks.nets.swin_unetr import SwinTransformer as SwinViT | |
| from monai.utils import ensure_tuple_rep, optional_import | |
| """ | |
| Examples:: | |
| # for 3D single channel input with size (96,96,96), 4-channel output and feature size of 48. | |
| >>> net = SwinUNETR(img_size=(96,96,96), in_channels=1, out_channels=4, feature_size=48) | |
| # for 3D 4-channel input with size (128,128,128), 3-channel output and (2,4,2,2) layers in each stage. | |
| >>> net = SwinUNETR(img_size=(128,128,128), in_channels=4, out_channels=3, depths=(2,4,2,2)) | |
| # for 2D single channel input with size (96,96), 2-channel output and gradient checkpointing. | |
| >>> net = SwinUNETR(img_size=(96,96), in_channels=3, out_channels=2, use_checkpoint=True, spatial_dims=2) | |
| """ | |
| def build_sam_vit_3d(checkpoint=None): | |
| print('build_sam_vit_3d...') | |
| return _build_sam( | |
| image_encoder_type='vit', | |
| embed_dim = 768, | |
| patch_size=[4,16,16], | |
| checkpoint=checkpoint, | |
| image_size=[32,256,256], | |
| ) | |
| sam_model_registry = { | |
| "vit": build_sam_vit_3d, | |
| } | |
| def _build_sam( | |
| image_encoder_type, | |
| embed_dim, | |
| patch_size, | |
| checkpoint, | |
| image_size, | |
| ): | |
| mlp_dim = 3072 | |
| num_layers = 12 | |
| num_heads = 12 | |
| pos_embed = 'perceptron' | |
| dropout_rate = 0.0 | |
| image_encoder=ViT( | |
| in_channels=1, | |
| img_size=image_size, | |
| patch_size=patch_size, | |
| hidden_size=embed_dim, | |
| mlp_dim=mlp_dim, | |
| num_layers=num_layers, | |
| num_heads=num_heads, | |
| pos_embed=pos_embed, | |
| classification=False, | |
| dropout_rate=dropout_rate, | |
| ) | |
| image_embedding_size = [int(item) for item in (np.array(image_size) / np.array(patch_size))] | |
| if checkpoint is not None: | |
| with open(checkpoint, "rb") as f: | |
| state_dict = torch.load(f, map_location='cpu')['state_dict'] | |
| encoder_dict = {k.replace('model.encoder.', ''): v for k, v in state_dict.items() if 'model.encoder.' in k} | |
| image_encoder.load_state_dict(encoder_dict) | |
| print(f'===> image_encoder.load_param: {checkpoint}') | |
| sam = Sam( | |
| image_encoder=image_encoder, | |
| prompt_encoder=PromptEncoder( | |
| embed_dim=embed_dim, | |
| image_embedding_size=image_embedding_size, | |
| input_image_size=image_size, | |
| mask_in_chans=16, | |
| ), | |
| mask_decoder=MaskDecoder( | |
| image_encoder_type=image_encoder_type, | |
| num_multimask_outputs=3, | |
| transformer=TwoWayTransformer( | |
| depth=2, | |
| embedding_dim=embed_dim, | |
| mlp_dim=2048, | |
| num_heads=8, | |
| ), | |
| transformer_dim=embed_dim, | |
| iou_head_depth=3, | |
| iou_head_hidden_dim=256, | |
| image_size=np.array(image_size), | |
| patch_size=np.array(patch_size), | |
| ), | |
| pixel_mean=[123.675, 116.28, 103.53], | |
| pixel_std=[58.395, 57.12, 57.375], | |
| ) | |
| sam.eval() | |
| return sam | |