Spaces:
Runtime error
Runtime error
Upload utils_util_calculate_psnr_ssim.py
Browse files
utils/utils_util_calculate_psnr_ssim.py
ADDED
|
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def calculate_psnr(img1, img2, crop_border, input_order='HWC', test_y_channel=False):
|
| 7 |
+
"""Calculate PSNR (Peak Signal-to-Noise Ratio).
|
| 8 |
+
|
| 9 |
+
Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
|
| 10 |
+
|
| 11 |
+
Args:
|
| 12 |
+
img1 (ndarray): Images with range [0, 255].
|
| 13 |
+
img2 (ndarray): Images with range [0, 255].
|
| 14 |
+
crop_border (int): Cropped pixels in each edge of an image. These
|
| 15 |
+
pixels are not involved in the PSNR calculation.
|
| 16 |
+
input_order (str): Whether the input order is 'HWC' or 'CHW'.
|
| 17 |
+
Default: 'HWC'.
|
| 18 |
+
test_y_channel (bool): Test on Y channel of YCbCr. Default: False.
|
| 19 |
+
|
| 20 |
+
Returns:
|
| 21 |
+
float: psnr result.
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.')
|
| 25 |
+
if input_order not in ['HWC', 'CHW']:
|
| 26 |
+
raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"')
|
| 27 |
+
img1 = reorder_image(img1, input_order=input_order)
|
| 28 |
+
img2 = reorder_image(img2, input_order=input_order)
|
| 29 |
+
img1 = img1.astype(np.float64)
|
| 30 |
+
img2 = img2.astype(np.float64)
|
| 31 |
+
|
| 32 |
+
if crop_border != 0:
|
| 33 |
+
img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]
|
| 34 |
+
img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]
|
| 35 |
+
|
| 36 |
+
if test_y_channel:
|
| 37 |
+
img1 = to_y_channel(img1)
|
| 38 |
+
img2 = to_y_channel(img2)
|
| 39 |
+
|
| 40 |
+
mse = np.mean((img1 - img2) ** 2)
|
| 41 |
+
if mse == 0:
|
| 42 |
+
return float('inf')
|
| 43 |
+
return 20. * np.log10(255. / np.sqrt(mse))
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def _ssim(img1, img2):
|
| 47 |
+
"""Calculate SSIM (structural similarity) for one channel images.
|
| 48 |
+
|
| 49 |
+
It is called by func:`calculate_ssim`.
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
img1 (ndarray): Images with range [0, 255] with order 'HWC'.
|
| 53 |
+
img2 (ndarray): Images with range [0, 255] with order 'HWC'.
|
| 54 |
+
|
| 55 |
+
Returns:
|
| 56 |
+
float: ssim result.
|
| 57 |
+
"""
|
| 58 |
+
|
| 59 |
+
C1 = (0.01 * 255) ** 2
|
| 60 |
+
C2 = (0.03 * 255) ** 2
|
| 61 |
+
|
| 62 |
+
img1 = img1.astype(np.float64)
|
| 63 |
+
img2 = img2.astype(np.float64)
|
| 64 |
+
kernel = cv2.getGaussianKernel(11, 1.5)
|
| 65 |
+
window = np.outer(kernel, kernel.transpose())
|
| 66 |
+
|
| 67 |
+
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5]
|
| 68 |
+
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
|
| 69 |
+
mu1_sq = mu1 ** 2
|
| 70 |
+
mu2_sq = mu2 ** 2
|
| 71 |
+
mu1_mu2 = mu1 * mu2
|
| 72 |
+
sigma1_sq = cv2.filter2D(img1 ** 2, -1, window)[5:-5, 5:-5] - mu1_sq
|
| 73 |
+
sigma2_sq = cv2.filter2D(img2 ** 2, -1, window)[5:-5, 5:-5] - mu2_sq
|
| 74 |
+
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
|
| 75 |
+
|
| 76 |
+
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
|
| 77 |
+
return ssim_map.mean()
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def calculate_ssim(img1, img2, crop_border, input_order='HWC', test_y_channel=False):
|
| 81 |
+
"""Calculate SSIM (structural similarity).
|
| 82 |
+
|
| 83 |
+
Ref:
|
| 84 |
+
Image quality assessment: From error visibility to structural similarity
|
| 85 |
+
|
| 86 |
+
The results are the same as that of the official released MATLAB code in
|
| 87 |
+
https://ece.uwaterloo.ca/~z70wang/research/ssim/.
|
| 88 |
+
|
| 89 |
+
For three-channel images, SSIM is calculated for each channel and then
|
| 90 |
+
averaged.
|
| 91 |
+
|
| 92 |
+
Args:
|
| 93 |
+
img1 (ndarray): Images with range [0, 255].
|
| 94 |
+
img2 (ndarray): Images with range [0, 255].
|
| 95 |
+
crop_border (int): Cropped pixels in each edge of an image. These
|
| 96 |
+
pixels are not involved in the SSIM calculation.
|
| 97 |
+
input_order (str): Whether the input order is 'HWC' or 'CHW'.
|
| 98 |
+
Default: 'HWC'.
|
| 99 |
+
test_y_channel (bool): Test on Y channel of YCbCr. Default: False.
|
| 100 |
+
|
| 101 |
+
Returns:
|
| 102 |
+
float: ssim result.
|
| 103 |
+
"""
|
| 104 |
+
|
| 105 |
+
assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.')
|
| 106 |
+
if input_order not in ['HWC', 'CHW']:
|
| 107 |
+
raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"')
|
| 108 |
+
img1 = reorder_image(img1, input_order=input_order)
|
| 109 |
+
img2 = reorder_image(img2, input_order=input_order)
|
| 110 |
+
img1 = img1.astype(np.float64)
|
| 111 |
+
img2 = img2.astype(np.float64)
|
| 112 |
+
|
| 113 |
+
if crop_border != 0:
|
| 114 |
+
img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]
|
| 115 |
+
img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]
|
| 116 |
+
|
| 117 |
+
if test_y_channel:
|
| 118 |
+
img1 = to_y_channel(img1)
|
| 119 |
+
img2 = to_y_channel(img2)
|
| 120 |
+
|
| 121 |
+
ssims = []
|
| 122 |
+
for i in range(img1.shape[2]):
|
| 123 |
+
ssims.append(_ssim(img1[..., i], img2[..., i]))
|
| 124 |
+
return np.array(ssims).mean()
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def _blocking_effect_factor(im):
|
| 128 |
+
block_size = 8
|
| 129 |
+
|
| 130 |
+
block_horizontal_positions = torch.arange(7, im.shape[3] - 1, 8)
|
| 131 |
+
block_vertical_positions = torch.arange(7, im.shape[2] - 1, 8)
|
| 132 |
+
|
| 133 |
+
horizontal_block_difference = (
|
| 134 |
+
(im[:, :, :, block_horizontal_positions] - im[:, :, :, block_horizontal_positions + 1]) ** 2).sum(
|
| 135 |
+
3).sum(2).sum(1)
|
| 136 |
+
vertical_block_difference = (
|
| 137 |
+
(im[:, :, block_vertical_positions, :] - im[:, :, block_vertical_positions + 1, :]) ** 2).sum(3).sum(
|
| 138 |
+
2).sum(1)
|
| 139 |
+
|
| 140 |
+
nonblock_horizontal_positions = np.setdiff1d(torch.arange(0, im.shape[3] - 1), block_horizontal_positions)
|
| 141 |
+
nonblock_vertical_positions = np.setdiff1d(torch.arange(0, im.shape[2] - 1), block_vertical_positions)
|
| 142 |
+
|
| 143 |
+
horizontal_nonblock_difference = (
|
| 144 |
+
(im[:, :, :, nonblock_horizontal_positions] - im[:, :, :, nonblock_horizontal_positions + 1]) ** 2).sum(
|
| 145 |
+
3).sum(2).sum(1)
|
| 146 |
+
vertical_nonblock_difference = (
|
| 147 |
+
(im[:, :, nonblock_vertical_positions, :] - im[:, :, nonblock_vertical_positions + 1, :]) ** 2).sum(
|
| 148 |
+
3).sum(2).sum(1)
|
| 149 |
+
|
| 150 |
+
n_boundary_horiz = im.shape[2] * (im.shape[3] // block_size - 1)
|
| 151 |
+
n_boundary_vert = im.shape[3] * (im.shape[2] // block_size - 1)
|
| 152 |
+
boundary_difference = (horizontal_block_difference + vertical_block_difference) / (
|
| 153 |
+
n_boundary_horiz + n_boundary_vert)
|
| 154 |
+
|
| 155 |
+
n_nonboundary_horiz = im.shape[2] * (im.shape[3] - 1) - n_boundary_horiz
|
| 156 |
+
n_nonboundary_vert = im.shape[3] * (im.shape[2] - 1) - n_boundary_vert
|
| 157 |
+
nonboundary_difference = (horizontal_nonblock_difference + vertical_nonblock_difference) / (
|
| 158 |
+
n_nonboundary_horiz + n_nonboundary_vert)
|
| 159 |
+
|
| 160 |
+
scaler = np.log2(block_size) / np.log2(min([im.shape[2], im.shape[3]]))
|
| 161 |
+
bef = scaler * (boundary_difference - nonboundary_difference)
|
| 162 |
+
|
| 163 |
+
bef[boundary_difference <= nonboundary_difference] = 0
|
| 164 |
+
return bef
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
def calculate_psnrb(img1, img2, crop_border, input_order='HWC', test_y_channel=False):
|
| 168 |
+
"""Calculate PSNR-B (Peak Signal-to-Noise Ratio).
|
| 169 |
+
|
| 170 |
+
Ref: Quality assessment of deblocked images, for JPEG image deblocking evaluation
|
| 171 |
+
# https://gitlab.com/Queuecumber/quantization-guided-ac/-/blob/master/metrics/psnrb.py
|
| 172 |
+
|
| 173 |
+
Args:
|
| 174 |
+
img1 (ndarray): Images with range [0, 255].
|
| 175 |
+
img2 (ndarray): Images with range [0, 255].
|
| 176 |
+
crop_border (int): Cropped pixels in each edge of an image. These
|
| 177 |
+
pixels are not involved in the PSNR calculation.
|
| 178 |
+
input_order (str): Whether the input order is 'HWC' or 'CHW'.
|
| 179 |
+
Default: 'HWC'.
|
| 180 |
+
test_y_channel (bool): Test on Y channel of YCbCr. Default: False.
|
| 181 |
+
|
| 182 |
+
Returns:
|
| 183 |
+
float: psnr result.
|
| 184 |
+
"""
|
| 185 |
+
|
| 186 |
+
assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.')
|
| 187 |
+
if input_order not in ['HWC', 'CHW']:
|
| 188 |
+
raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"')
|
| 189 |
+
img1 = reorder_image(img1, input_order=input_order)
|
| 190 |
+
img2 = reorder_image(img2, input_order=input_order)
|
| 191 |
+
img1 = img1.astype(np.float64)
|
| 192 |
+
img2 = img2.astype(np.float64)
|
| 193 |
+
|
| 194 |
+
if crop_border != 0:
|
| 195 |
+
img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]
|
| 196 |
+
img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]
|
| 197 |
+
|
| 198 |
+
if test_y_channel:
|
| 199 |
+
img1 = to_y_channel(img1)
|
| 200 |
+
img2 = to_y_channel(img2)
|
| 201 |
+
|
| 202 |
+
# follow https://gitlab.com/Queuecumber/quantization-guided-ac/-/blob/master/metrics/psnrb.py
|
| 203 |
+
img1 = torch.from_numpy(img1).permute(2, 0, 1).unsqueeze(0) / 255.
|
| 204 |
+
img2 = torch.from_numpy(img2).permute(2, 0, 1).unsqueeze(0) / 255.
|
| 205 |
+
|
| 206 |
+
total = 0
|
| 207 |
+
for c in range(img1.shape[1]):
|
| 208 |
+
mse = torch.nn.functional.mse_loss(img1[:, c:c + 1, :, :], img2[:, c:c + 1, :, :], reduction='none')
|
| 209 |
+
bef = _blocking_effect_factor(img1[:, c:c + 1, :, :])
|
| 210 |
+
|
| 211 |
+
mse = mse.view(mse.shape[0], -1).mean(1)
|
| 212 |
+
total += 10 * torch.log10(1 / (mse + bef))
|
| 213 |
+
|
| 214 |
+
return float(total) / img1.shape[1]
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
def reorder_image(img, input_order='HWC'):
|
| 218 |
+
"""Reorder images to 'HWC' order.
|
| 219 |
+
|
| 220 |
+
If the input_order is (h, w), return (h, w, 1);
|
| 221 |
+
If the input_order is (c, h, w), return (h, w, c);
|
| 222 |
+
If the input_order is (h, w, c), return as it is.
|
| 223 |
+
|
| 224 |
+
Args:
|
| 225 |
+
img (ndarray): Input image.
|
| 226 |
+
input_order (str): Whether the input order is 'HWC' or 'CHW'.
|
| 227 |
+
If the input image shape is (h, w), input_order will not have
|
| 228 |
+
effects. Default: 'HWC'.
|
| 229 |
+
|
| 230 |
+
Returns:
|
| 231 |
+
ndarray: reordered image.
|
| 232 |
+
"""
|
| 233 |
+
|
| 234 |
+
if input_order not in ['HWC', 'CHW']:
|
| 235 |
+
raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' "'HWC' and 'CHW'")
|
| 236 |
+
if len(img.shape) == 2:
|
| 237 |
+
img = img[..., None]
|
| 238 |
+
if input_order == 'CHW':
|
| 239 |
+
img = img.transpose(1, 2, 0)
|
| 240 |
+
return img
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
def to_y_channel(img):
|
| 244 |
+
"""Change to Y channel of YCbCr.
|
| 245 |
+
|
| 246 |
+
Args:
|
| 247 |
+
img (ndarray): Images with range [0, 255].
|
| 248 |
+
|
| 249 |
+
Returns:
|
| 250 |
+
(ndarray): Images with range [0, 255] (float type) without round.
|
| 251 |
+
"""
|
| 252 |
+
img = img.astype(np.float32) / 255.
|
| 253 |
+
if img.ndim == 3 and img.shape[2] == 3:
|
| 254 |
+
img = bgr2ycbcr(img, y_only=True)
|
| 255 |
+
img = img[..., None]
|
| 256 |
+
return img * 255.
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
def _convert_input_type_range(img):
|
| 260 |
+
"""Convert the type and range of the input image.
|
| 261 |
+
|
| 262 |
+
It converts the input image to np.float32 type and range of [0, 1].
|
| 263 |
+
It is mainly used for pre-processing the input image in colorspace
|
| 264 |
+
convertion functions such as rgb2ycbcr and ycbcr2rgb.
|
| 265 |
+
|
| 266 |
+
Args:
|
| 267 |
+
img (ndarray): The input image. It accepts:
|
| 268 |
+
1. np.uint8 type with range [0, 255];
|
| 269 |
+
2. np.float32 type with range [0, 1].
|
| 270 |
+
|
| 271 |
+
Returns:
|
| 272 |
+
(ndarray): The converted image with type of np.float32 and range of
|
| 273 |
+
[0, 1].
|
| 274 |
+
"""
|
| 275 |
+
img_type = img.dtype
|
| 276 |
+
img = img.astype(np.float32)
|
| 277 |
+
if img_type == np.float32:
|
| 278 |
+
pass
|
| 279 |
+
elif img_type == np.uint8:
|
| 280 |
+
img /= 255.
|
| 281 |
+
else:
|
| 282 |
+
raise TypeError('The img type should be np.float32 or np.uint8, ' f'but got {img_type}')
|
| 283 |
+
return img
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
def _convert_output_type_range(img, dst_type):
|
| 287 |
+
"""Convert the type and range of the image according to dst_type.
|
| 288 |
+
|
| 289 |
+
It converts the image to desired type and range. If `dst_type` is np.uint8,
|
| 290 |
+
images will be converted to np.uint8 type with range [0, 255]. If
|
| 291 |
+
`dst_type` is np.float32, it converts the image to np.float32 type with
|
| 292 |
+
range [0, 1].
|
| 293 |
+
It is mainly used for post-processing images in colorspace convertion
|
| 294 |
+
functions such as rgb2ycbcr and ycbcr2rgb.
|
| 295 |
+
|
| 296 |
+
Args:
|
| 297 |
+
img (ndarray): The image to be converted with np.float32 type and
|
| 298 |
+
range [0, 255].
|
| 299 |
+
dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it
|
| 300 |
+
converts the image to np.uint8 type with range [0, 255]. If
|
| 301 |
+
dst_type is np.float32, it converts the image to np.float32 type
|
| 302 |
+
with range [0, 1].
|
| 303 |
+
|
| 304 |
+
Returns:
|
| 305 |
+
(ndarray): The converted image with desired type and range.
|
| 306 |
+
"""
|
| 307 |
+
if dst_type not in (np.uint8, np.float32):
|
| 308 |
+
raise TypeError('The dst_type should be np.float32 or np.uint8, ' f'but got {dst_type}')
|
| 309 |
+
if dst_type == np.uint8:
|
| 310 |
+
img = img.round()
|
| 311 |
+
else:
|
| 312 |
+
img /= 255.
|
| 313 |
+
return img.astype(dst_type)
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
def bgr2ycbcr(img, y_only=False):
|
| 317 |
+
"""Convert a BGR image to YCbCr image.
|
| 318 |
+
|
| 319 |
+
The bgr version of rgb2ycbcr.
|
| 320 |
+
It implements the ITU-R BT.601 conversion for standard-definition
|
| 321 |
+
television. See more details in
|
| 322 |
+
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
|
| 323 |
+
|
| 324 |
+
It differs from a similar function in cv2.cvtColor: `BGR <-> YCrCb`.
|
| 325 |
+
In OpenCV, it implements a JPEG conversion. See more details in
|
| 326 |
+
https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
|
| 327 |
+
|
| 328 |
+
Args:
|
| 329 |
+
img (ndarray): The input image. It accepts:
|
| 330 |
+
1. np.uint8 type with range [0, 255];
|
| 331 |
+
2. np.float32 type with range [0, 1].
|
| 332 |
+
y_only (bool): Whether to only return Y channel. Default: False.
|
| 333 |
+
|
| 334 |
+
Returns:
|
| 335 |
+
ndarray: The converted YCbCr image. The output image has the same type
|
| 336 |
+
and range as input image.
|
| 337 |
+
"""
|
| 338 |
+
img_type = img.dtype
|
| 339 |
+
img = _convert_input_type_range(img)
|
| 340 |
+
if y_only:
|
| 341 |
+
out_img = np.dot(img, [24.966, 128.553, 65.481]) + 16.0
|
| 342 |
+
else:
|
| 343 |
+
out_img = np.matmul(
|
| 344 |
+
img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) + [16, 128, 128]
|
| 345 |
+
out_img = _convert_output_type_range(out_img, img_type)
|
| 346 |
+
return out_img
|