File size: 10,214 Bytes
27626d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import spaces
import logging
import os
import random
import re
import sys
import warnings

from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
import gradio as gr
import torch
from transformers import AutoModel, AutoTokenizer

sys.path.append(os.path.dirname(os.path.abspath(__file__)))

from diffusers import ZImagePipeline
from diffusers.models.transformers.transformer_z_image import ZImageTransformer2DModel

# ==================== Environment Variables ==================================
MODEL_PATH = os.environ.get("MODEL_PATH", "Tongyi-MAI/Z-Image-Turbo")
ENABLE_COMPILE = os.environ.get("ENABLE_COMPILE", "true").lower() == "true"
ENABLE_WARMUP = os.environ.get("ENABLE_WARMUP", "true").lower() == "true"
ATTENTION_BACKEND = os.environ.get("ATTENTION_BACKEND", "flash_3")
HF_TOKEN = os.environ.get("HF_TOKEN")
# =============================================================================

os.environ["TOKENIZERS_PARALLELISM"] = "false"
warnings.filterwarnings("ignore")
logging.getLogger("transformers").setLevel(logging.ERROR)

RES_CHOICES = {
    "1024": [
        "1024x1024 ( 1:1 )", "1152x896 ( 9:7 )", "896x1152 ( 7:9 )",
        "1152x864 ( 4:3 )", "864x1152 ( 3:4 )", "1248x832 ( 3:2 )",
        "832x1248 ( 2:3 )", "1280x720 ( 16:9 )", "720x1280 ( 9:16 )",
        "1344x576 ( 21:9 )", "576x1344 ( 9:21 )",
    ],
    "1280": [
        "1280x1280 ( 1:1 )", "1440x1120 ( 9:7 )", "1120x1440 ( 7:9 )",
        "1472x1104 ( 4:3 )", "1104x1472 ( 3:4 )", "1536x1024 ( 3:2 )",
        "1024x1536 ( 2:3 )", "1600x896 ( 16:9 )", "896x1600 ( 9:16 )", 
        "1680x720 ( 21:9 )", "720x1680 ( 9:21 )",
    ],
}

EXAMPLE_PROMPTS = [
    ["一位男士和他的贵宾犬穿着配套的服装参加狗狗秀,室内灯光,背景中有观众。"],
    ["极具氛围感的暗调人像,一位优雅的中国美女在黑暗的房间里..."],
    ["一张中景手机自拍照片拍摄了一位留着长黑发的年轻东亚女子..."],
    ["Young Chinese woman in red Hanfu, intricate embroidery..."],
    ["A vertical digital illustration depicting a serene and majestic Chinese landscape..."],
    ["一张虚构的英语电影《回忆之味》(The Taste of Memory)的电影海报..."],
    ["一张方形构图的特写照片,主体是一片巨大的、鲜绿色的植物叶片..."],
]

def get_resolution(resolution):
    match = re.search(r"(\d+)\s*[×x]\s*(\d+)", resolution)
    if match:
        return int(match.group(1)), int(match.group(2))
    return 1024, 1024

def load_models(model_path, enable_compile=False, attention_backend="native"):
    print(f"Loading models from {model_path}...")

    use_auth_token = HF_TOKEN if HF_TOKEN else True

    # Load VAE, Text Encoder, Tokenizer
    if not os.path.exists(model_path):
        vae = AutoencoderKL.from_pretrained(
            f"{model_path}", subfolder="vae", torch_dtype=torch.bfloat16,
            device_map="cuda", use_auth_token=use_auth_token,
        )
        text_encoder = AutoModel.from_pretrained(
            f"{model_path}", subfolder="text_encoder", torch_dtype=torch.bfloat16,
            device_map="cuda", use_auth_token=use_auth_token,
        ).eval()
        tokenizer = AutoTokenizer.from_pretrained(f"{model_path}", subfolder="tokenizer", use_auth_token=use_auth_token)
    else:
        vae = AutoencoderKL.from_pretrained(os.path.join(model_path, "vae"), torch_dtype=torch.bfloat16, device_map="cuda")
        text_encoder = AutoModel.from_pretrained(os.path.join(model_path, "text_encoder"), torch_dtype=torch.bfloat16, device_map="cuda").eval()
        tokenizer = AutoTokenizer.from_pretrained(os.path.join(model_path, "tokenizer"))

    tokenizer.padding_side = "left"

    if enable_compile:
        print("Enabling torch.compile optimizations...")
        torch._inductor.config.conv_1x1_as_mm = True
        torch._inductor.config.coordinate_descent_tuning = True
        torch._inductor.config.epilogue_fusion = False
        torch._inductor.config.coordinate_descent_check_all_directions = True
        torch._inductor.config.max_autotune_gemm = True
        torch._inductor.config.max_autotune_gemm_backends = "TRITON,ATEN"
        torch._inductor.config.triton.cudagraphs = False

    pipe = ZImagePipeline(scheduler=None, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, transformer=None)

    if enable_compile:
        pipe.vae.disable_tiling()

    # Load Transformer
    if not os.path.exists(model_path):
        transformer = ZImageTransformer2DModel.from_pretrained(
            f"{model_path}", subfolder="transformer", use_auth_token=use_auth_token
        ).to("cuda", torch.bfloat16)
    else:
        transformer = ZImageTransformer2DModel.from_pretrained(os.path.join(model_path, "transformer")).to("cuda", torch.bfloat16)

    pipe.transformer = transformer
    pipe.transformer.set_attention_backend(attention_backend)

    if enable_compile:
        print("Compiling transformer...")
        pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune-no-cudagraphs", fullgraph=False)

    pipe.to("cuda", torch.bfloat16)
    return pipe

def generate_image(pipe, prompt, width=1024, height=1024, seed=42, guidance_scale=5.0, num_inference_steps=50, shift=3.0, max_sequence_length=512, progress=gr.Progress(track_tqdm=True)):
    generator = torch.Generator("cuda").manual_seed(seed)
    scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=shift)
    pipe.scheduler = scheduler

    image = pipe(
        prompt=prompt, height=height, width=width,
        guidance_scale=guidance_scale, num_inference_steps=num_inference_steps,
        generator=generator, max_sequence_length=max_sequence_length,
    ).images[0]

    return image

def warmup_model(pipe, resolutions):
    print("Starting warmup phase...")
    dummy_prompt = "warmup"
    for res_str in resolutions:
        try:
            w, h = get_resolution(res_str)
            for i in range(3):
                generate_image(pipe, prompt=dummy_prompt, width=w, height=h, num_inference_steps=9, guidance_scale=0.0, seed=42 + i)
        except Exception as e:
            print(f"Warmup failed for {res_str}: {e}")
    print("Warmup completed.")

# Global Pipe Variable
pipe = None

def init_app():
    global pipe
    try:
        pipe = load_models(MODEL_PATH, enable_compile=ENABLE_COMPILE, attention_backend=ATTENTION_BACKEND)
        print(f"Model loaded. Compile: {ENABLE_COMPILE}, Backend: {ATTENTION_BACKEND}")

        if ENABLE_WARMUP:
            all_resolutions = []
            for cat in RES_CHOICES.values():
                all_resolutions.extend(cat)
            warmup_model(pipe, all_resolutions)

    except Exception as e:
        print(f"Error loading model: {e}")
        pipe = None
        # 移除 Prompt Expander 初始化

@spaces.GPU
def generate(prompt, width=1024, height=1024, seed=42, steps=9, shift=3.0, random_seed=True, gallery_images=None, progress=gr.Progress(track_tqdm=True)):
    if pipe is None:
        raise gr.Error("Model not loaded. Please check logs.")

    if random_seed:
        new_seed = random.randint(1, 1000000)
    else:
        new_seed = seed if seed != -1 else random.randint(1, 1000000)

    image = generate_image(
        pipe=pipe, prompt=prompt, width=int(width), height=int(height),
        seed=new_seed, guidance_scale=0.0, num_inference_steps=int(steps + 1), shift=shift,
    )

    if gallery_images is None:
        gallery_images = []
    gallery_images.append(image)

    return gallery_images, str(new_seed), int(new_seed)

# Initialize
init_app()

# ==================== AoTI (Ahead of Time Inductor compilation) ====================
# 安全检查:只有 pipe 成功加载后才执行优化配置,避免 AttributeError
if pipe is not None:
    try:
        pipe.transformer.layers._repeated_blocks = ["ZImageTransformerBlock"]
        spaces.aoti_blocks_load(pipe.transformer.layers, "zerogpu-aoti/Z-Image", variant="fa3")
    except Exception as e:
        print(f"Warning: Failed to load AoTI blocks: {e}")
else:
    print("CRITICAL: Pipe is None. Model failed to load in init_app(). Check upstream errors.")

# ==================== UI Construction ====================
with gr.Blocks(title="Z-Image Demo") as demo:
    gr.Markdown(
        """<div align="center">
# Z-Image Generation Demo
[![GitHub](https://img.shields.io/badge/GitHub-Z--Image-181717?logo=github&logoColor=white)](https://github.com/Tongyi-MAI/Z-Image)
*An Efficient Image Generation Foundation Model with Single-Stream Diffusion Transformer*
</div>"""
    )

    with gr.Row():
        with gr.Column(scale=1):
            prompt_input = gr.Textbox(label="Prompt", lines=3, placeholder="Enter your prompt here...")
            
            with gr.Row():
                width = gr.Slider(label="Width", minimum=640, maximum=2048, value=1024, step=64)
                height = gr.Slider(label="Height", minimum=640, maximum=2048, value=1024, step=64)

            with gr.Row():
                seed = gr.Number(label="Seed", value=42, precision=0)
                random_seed = gr.Checkbox(label="Random Seed", value=True)

            with gr.Row():
                steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=8, step=1, interactive=False)
                shift = gr.Slider(label="Time Shift", minimum=1.0, maximum=10.0, value=3.0, step=0.1)

            generate_btn = gr.Button("Generate", variant="primary")

            gr.Markdown("### 📝 Example Prompts")
            gr.Examples(examples=EXAMPLE_PROMPTS, inputs=prompt_input, label=None)

        with gr.Column(scale=1):
            output_gallery = gr.Gallery(
                label="Generated Images", columns=2, rows=2, height=600, object_fit="contain", format="png", interactive=False
            )
            used_seed = gr.Textbox(label="Seed Used", interactive=False)

    generate_btn.click(
        generate,
        inputs=[prompt_input, width, height, seed, steps, shift, random_seed, output_gallery],
        outputs=[output_gallery, used_seed, seed],
        api_visibility="public",
    )

css='''
.fillable{max-width: 1230px !important}
'''
if __name__ == "__main__":
    demo.launch(css=css, mcp_server=True)