Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,214 Bytes
27626d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import spaces
import logging
import os
import random
import re
import sys
import warnings
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
import gradio as gr
import torch
from transformers import AutoModel, AutoTokenizer
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from diffusers import ZImagePipeline
from diffusers.models.transformers.transformer_z_image import ZImageTransformer2DModel
# ==================== Environment Variables ==================================
MODEL_PATH = os.environ.get("MODEL_PATH", "Tongyi-MAI/Z-Image-Turbo")
ENABLE_COMPILE = os.environ.get("ENABLE_COMPILE", "true").lower() == "true"
ENABLE_WARMUP = os.environ.get("ENABLE_WARMUP", "true").lower() == "true"
ATTENTION_BACKEND = os.environ.get("ATTENTION_BACKEND", "flash_3")
HF_TOKEN = os.environ.get("HF_TOKEN")
# =============================================================================
os.environ["TOKENIZERS_PARALLELISM"] = "false"
warnings.filterwarnings("ignore")
logging.getLogger("transformers").setLevel(logging.ERROR)
RES_CHOICES = {
"1024": [
"1024x1024 ( 1:1 )", "1152x896 ( 9:7 )", "896x1152 ( 7:9 )",
"1152x864 ( 4:3 )", "864x1152 ( 3:4 )", "1248x832 ( 3:2 )",
"832x1248 ( 2:3 )", "1280x720 ( 16:9 )", "720x1280 ( 9:16 )",
"1344x576 ( 21:9 )", "576x1344 ( 9:21 )",
],
"1280": [
"1280x1280 ( 1:1 )", "1440x1120 ( 9:7 )", "1120x1440 ( 7:9 )",
"1472x1104 ( 4:3 )", "1104x1472 ( 3:4 )", "1536x1024 ( 3:2 )",
"1024x1536 ( 2:3 )", "1600x896 ( 16:9 )", "896x1600 ( 9:16 )",
"1680x720 ( 21:9 )", "720x1680 ( 9:21 )",
],
}
EXAMPLE_PROMPTS = [
["一位男士和他的贵宾犬穿着配套的服装参加狗狗秀,室内灯光,背景中有观众。"],
["极具氛围感的暗调人像,一位优雅的中国美女在黑暗的房间里..."],
["一张中景手机自拍照片拍摄了一位留着长黑发的年轻东亚女子..."],
["Young Chinese woman in red Hanfu, intricate embroidery..."],
["A vertical digital illustration depicting a serene and majestic Chinese landscape..."],
["一张虚构的英语电影《回忆之味》(The Taste of Memory)的电影海报..."],
["一张方形构图的特写照片,主体是一片巨大的、鲜绿色的植物叶片..."],
]
def get_resolution(resolution):
match = re.search(r"(\d+)\s*[×x]\s*(\d+)", resolution)
if match:
return int(match.group(1)), int(match.group(2))
return 1024, 1024
def load_models(model_path, enable_compile=False, attention_backend="native"):
print(f"Loading models from {model_path}...")
use_auth_token = HF_TOKEN if HF_TOKEN else True
# Load VAE, Text Encoder, Tokenizer
if not os.path.exists(model_path):
vae = AutoencoderKL.from_pretrained(
f"{model_path}", subfolder="vae", torch_dtype=torch.bfloat16,
device_map="cuda", use_auth_token=use_auth_token,
)
text_encoder = AutoModel.from_pretrained(
f"{model_path}", subfolder="text_encoder", torch_dtype=torch.bfloat16,
device_map="cuda", use_auth_token=use_auth_token,
).eval()
tokenizer = AutoTokenizer.from_pretrained(f"{model_path}", subfolder="tokenizer", use_auth_token=use_auth_token)
else:
vae = AutoencoderKL.from_pretrained(os.path.join(model_path, "vae"), torch_dtype=torch.bfloat16, device_map="cuda")
text_encoder = AutoModel.from_pretrained(os.path.join(model_path, "text_encoder"), torch_dtype=torch.bfloat16, device_map="cuda").eval()
tokenizer = AutoTokenizer.from_pretrained(os.path.join(model_path, "tokenizer"))
tokenizer.padding_side = "left"
if enable_compile:
print("Enabling torch.compile optimizations...")
torch._inductor.config.conv_1x1_as_mm = True
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.epilogue_fusion = False
torch._inductor.config.coordinate_descent_check_all_directions = True
torch._inductor.config.max_autotune_gemm = True
torch._inductor.config.max_autotune_gemm_backends = "TRITON,ATEN"
torch._inductor.config.triton.cudagraphs = False
pipe = ZImagePipeline(scheduler=None, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, transformer=None)
if enable_compile:
pipe.vae.disable_tiling()
# Load Transformer
if not os.path.exists(model_path):
transformer = ZImageTransformer2DModel.from_pretrained(
f"{model_path}", subfolder="transformer", use_auth_token=use_auth_token
).to("cuda", torch.bfloat16)
else:
transformer = ZImageTransformer2DModel.from_pretrained(os.path.join(model_path, "transformer")).to("cuda", torch.bfloat16)
pipe.transformer = transformer
pipe.transformer.set_attention_backend(attention_backend)
if enable_compile:
print("Compiling transformer...")
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune-no-cudagraphs", fullgraph=False)
pipe.to("cuda", torch.bfloat16)
return pipe
def generate_image(pipe, prompt, width=1024, height=1024, seed=42, guidance_scale=5.0, num_inference_steps=50, shift=3.0, max_sequence_length=512, progress=gr.Progress(track_tqdm=True)):
generator = torch.Generator("cuda").manual_seed(seed)
scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=shift)
pipe.scheduler = scheduler
image = pipe(
prompt=prompt, height=height, width=width,
guidance_scale=guidance_scale, num_inference_steps=num_inference_steps,
generator=generator, max_sequence_length=max_sequence_length,
).images[0]
return image
def warmup_model(pipe, resolutions):
print("Starting warmup phase...")
dummy_prompt = "warmup"
for res_str in resolutions:
try:
w, h = get_resolution(res_str)
for i in range(3):
generate_image(pipe, prompt=dummy_prompt, width=w, height=h, num_inference_steps=9, guidance_scale=0.0, seed=42 + i)
except Exception as e:
print(f"Warmup failed for {res_str}: {e}")
print("Warmup completed.")
# Global Pipe Variable
pipe = None
def init_app():
global pipe
try:
pipe = load_models(MODEL_PATH, enable_compile=ENABLE_COMPILE, attention_backend=ATTENTION_BACKEND)
print(f"Model loaded. Compile: {ENABLE_COMPILE}, Backend: {ATTENTION_BACKEND}")
if ENABLE_WARMUP:
all_resolutions = []
for cat in RES_CHOICES.values():
all_resolutions.extend(cat)
warmup_model(pipe, all_resolutions)
except Exception as e:
print(f"Error loading model: {e}")
pipe = None
# 移除 Prompt Expander 初始化
@spaces.GPU
def generate(prompt, width=1024, height=1024, seed=42, steps=9, shift=3.0, random_seed=True, gallery_images=None, progress=gr.Progress(track_tqdm=True)):
if pipe is None:
raise gr.Error("Model not loaded. Please check logs.")
if random_seed:
new_seed = random.randint(1, 1000000)
else:
new_seed = seed if seed != -1 else random.randint(1, 1000000)
image = generate_image(
pipe=pipe, prompt=prompt, width=int(width), height=int(height),
seed=new_seed, guidance_scale=0.0, num_inference_steps=int(steps + 1), shift=shift,
)
if gallery_images is None:
gallery_images = []
gallery_images.append(image)
return gallery_images, str(new_seed), int(new_seed)
# Initialize
init_app()
# ==================== AoTI (Ahead of Time Inductor compilation) ====================
# 安全检查:只有 pipe 成功加载后才执行优化配置,避免 AttributeError
if pipe is not None:
try:
pipe.transformer.layers._repeated_blocks = ["ZImageTransformerBlock"]
spaces.aoti_blocks_load(pipe.transformer.layers, "zerogpu-aoti/Z-Image", variant="fa3")
except Exception as e:
print(f"Warning: Failed to load AoTI blocks: {e}")
else:
print("CRITICAL: Pipe is None. Model failed to load in init_app(). Check upstream errors.")
# ==================== UI Construction ====================
with gr.Blocks(title="Z-Image Demo") as demo:
gr.Markdown(
"""<div align="center">
# Z-Image Generation Demo
[](https://github.com/Tongyi-MAI/Z-Image)
*An Efficient Image Generation Foundation Model with Single-Stream Diffusion Transformer*
</div>"""
)
with gr.Row():
with gr.Column(scale=1):
prompt_input = gr.Textbox(label="Prompt", lines=3, placeholder="Enter your prompt here...")
with gr.Row():
width = gr.Slider(label="Width", minimum=640, maximum=2048, value=1024, step=64)
height = gr.Slider(label="Height", minimum=640, maximum=2048, value=1024, step=64)
with gr.Row():
seed = gr.Number(label="Seed", value=42, precision=0)
random_seed = gr.Checkbox(label="Random Seed", value=True)
with gr.Row():
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=8, step=1, interactive=False)
shift = gr.Slider(label="Time Shift", minimum=1.0, maximum=10.0, value=3.0, step=0.1)
generate_btn = gr.Button("Generate", variant="primary")
gr.Markdown("### 📝 Example Prompts")
gr.Examples(examples=EXAMPLE_PROMPTS, inputs=prompt_input, label=None)
with gr.Column(scale=1):
output_gallery = gr.Gallery(
label="Generated Images", columns=2, rows=2, height=600, object_fit="contain", format="png", interactive=False
)
used_seed = gr.Textbox(label="Seed Used", interactive=False)
generate_btn.click(
generate,
inputs=[prompt_input, width, height, seed, steps, shift, random_seed, output_gallery],
outputs=[output_gallery, used_seed, seed],
api_visibility="public",
)
css='''
.fillable{max-width: 1230px !important}
'''
if __name__ == "__main__":
demo.launch(css=css, mcp_server=True) |