Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,150 Bytes
c28dddb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
import os
import sys
import random
import json
import numpy as np
from copy import deepcopy
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from metrics.iou_cdist import IoU_cDist
import networkx as nx
all_categories = [
"Table",
"StorageFurniture",
"WashingMachine",
"Microwave",
"Dishwasher",
"Refrigerator",
"Oven",
]
all_categories_acd = [
'armoire',
'bookcase',
'chestofdrawers',
'hangingcabinet',
'kitchencabinet'
]
def get_hash(file, key="diffuse_tree", ignore_handles=True, dag=False):
tree = file[key]
if dag:
G = nx.DiGraph()
else:
G = nx.Graph()
for node in tree:
if ignore_handles and "handle" in node["name"].lower():
continue
G.add_node(node["id"])
if node["parent"] != -1:
G.add_edge(node["id"], node["parent"])
hashcode = nx.weisfeiler_lehman_graph_hash(G)
return hashcode
def _verify_mesh_exists(dir, ply_files, verbose=False):
"""
Verify that the mesh files exist\n
- dir: the directory of the object\n
- ply_files: the list of mesh files\n
- verbose (optional): whether to print the progress\n
return:\n
- True if the mesh files exist, False otherwise
"""
for ply_file in ply_files:
if not os.path.exists(os.path.join(dir, ply_file)):
if verbose:
print(f" - {os.path.join(dir, ply_file)} does not exist!!!")
return False
return True
def _generate_output_part_dicts(
candidate_dict,
part_idx,
candidate_dir,
requirement_part_bbox_sizes,
bbox_size_eps=1e-3,
verbose=False,
):
"""
Generate the output part dictionary for all parts that are fulfilled by the candidate part and computing the scale factor of the parts\n
- candidate_dict: the candidate object dictionary\n
- part_idx: the index of the part in the candidate object\n
- candidate_dir: the directory of the candidate object\n
- requirement_part_bbox_sizes: the bounding box sizes of the requirement part in the form: [[lx1, ly1, lz1], [lx2, ly2, lz2], ...]\n
- bbox_size_eps (optional): the epsilon to avoid zero volume parts\n
- verbose (optional): whether to print the progress\n
Return:\n
- part_dicts: the output part dictionaries in the form:
- [{name, dir, files, scale_factor=[sx, sy, sz]}, z_rotate_90]
- z_rotate_90 is True if the part needs to be rotated by 90 degrees around the z-axis
- [{}, ...] if any of the mesh files do not exist
"""
part_dicts = [{} for _ in range(len(requirement_part_bbox_sizes))]
fixed_portion = {
"name": candidate_dict["diffuse_tree"][part_idx]["name"],
"dir": candidate_dir,
"files": candidate_dict["diffuse_tree"][part_idx]["plys"],
"z_rotate_90": False,
}
# Verify that the mesh files exist
if not _verify_mesh_exists(fixed_portion["dir"], fixed_portion["files"], verbose):
if verbose:
print(
f" - ! Found invalid mesh files in {fixed_portion['dir']}, skipping..."
)
return part_dicts # List of empty dicts
candidate_bbox_size = np.array(
candidate_dict["diffuse_tree"][part_idx]["aabb"]["size"]
)
candidate_bbox_size = np.maximum(
candidate_bbox_size, bbox_size_eps
) # Avoid zero volume parts
for i, requirement_part_bbox_size in enumerate(requirement_part_bbox_sizes):
part_dicts[i] = deepcopy(fixed_portion)
# For non-handle parts, compute the scale factor normally
if fixed_portion["name"] != "handle":
part_dicts[i]["scale_factor"] = list(
np.array(requirement_part_bbox_size) / candidate_bbox_size
)
# For handles, need to consider the orientation of the selected handle and the orientation of the requirement handle
else:
requirement_handle_is_horizontal = (
requirement_part_bbox_size[0] > requirement_part_bbox_size[1]
)
candidate_handle_is_horizontal = (
candidate_bbox_size[0] > candidate_bbox_size[1]
)
# If the orientations are different, rotate the requirement handle by 90 degrees around the z-axis before computing the scale factor
if requirement_handle_is_horizontal != candidate_handle_is_horizontal:
rotated_requirement_part_bbox_size = [
requirement_part_bbox_size[1],
requirement_part_bbox_size[0],
requirement_part_bbox_size[2],
]
part_dicts[i]["scale_factor"] = list(
np.array(rotated_requirement_part_bbox_size) / candidate_bbox_size
)
part_dicts[i]["z_rotate_90"] = True
# If the orientations are the same, compute the scale factor normally
else:
part_dicts[i]["scale_factor"] = list(
np.array(requirement_part_bbox_size) / candidate_bbox_size
)
return part_dicts
def find_obj_candidates(
requirement_dict,
dataset_dir,
hashbook_path,
num_states=5,
metric_compare_handles=False,
metric_iou_include_base=True,
metric_num_samples=10000,
keep_top=5,
gt_file_name="object.json",
verbose=False,
):
"""
Find the best object candidates for selecting the base part using AID\n
- requirement_dict: the object dictionary of the requirement\n
- dataset_dir: the directory of the dataset to search in\n
- hashbook_path: the path to the hashbook for filtering candidates\n
- num_states: the number of states to average the metric over\n
- metric_transform_plucker (optional): whether to use Plucker coordinates to move parts when computing the metric\n
- metric_compare_handles (optional): whether to compare handles when computing the metric\n
- metric_iou_include_base (optional): whether to include the base when computing the IoU\n
- metric_scale_factor (optional): the scale factor to scale the object before computing the metric\n
- Scaling up the object makes the sampling more well distributed\n
- metric_num_samples (optional): the number of samples to use when computing the metric\n
- keep_top (optional): the number of top candidates to keep\n
- gt_file_name (optional): the name of the ground truth json file, which describes a candidate object\n
- verbose (optional): whether to print the progress\n
return:\n
- a list of best object candidates of the form:
- {"category", "dir", "score"}
"""
dataset_dir = os.path.abspath(dataset_dir)
# Load the hashbook
with open(hashbook_path, "r") as f:
hashbook = json.load(f)
if 'acd' in hashbook_path:
all_categories = all_categories_acd
else:
all_categories = [
"Table",
"StorageFurniture",
"WashingMachine",
"Microwave",
"Dishwasher",
"Refrigerator",
"Oven",
]
# Resolve paths to directories
category_specified = False
requirement_category = ""
# if the category is specified, only search in that category, otherwise search in all categories
if "obj_cat" in requirement_dict["meta"]:
requirement_category = requirement_dict["meta"]["obj_cat"]
category_specified = True
if requirement_category == "StroageFurniture":
requirement_category = "StorageFurniture"
category_dirs = (
[os.path.join(dataset_dir, requirement_category)]
if category_specified
else [os.path.join(dataset_dir, category) for category in all_categories]
)
# Extract requirement data
requirement_part_names = []
requirement_part_bboxes = []
for part in requirement_dict["diffuse_tree"]:
requirement_part_names.append(part["name"])
requirement_part_bboxes.append(
np.concatenate([part["aabb"]["center"], part["aabb"]["size"]])
)
# Compute hash of the requirement graph
requirement_graph_hash = get_hash(requirement_dict)
# Prefetch list of ids of candidate objects with the same hash
# import ipdb
# ipdb.set_trace()
if category_specified and requirement_graph_hash in hashbook[requirement_category]:
same_hash_obj_ids = hashbook[requirement_category][requirement_graph_hash]
else:
# Use all categories if category is not specified
same_hash_obj_ids = []
for category in all_categories:
if requirement_graph_hash in hashbook[category]:
same_hash_obj_ids += hashbook[category][requirement_graph_hash]
# Iterate through all candidate objects and keep the top k candidates
best_obj_candidates = []
for category_dir in category_dirs:
obj_ids = os.listdir(category_dir)
for i, obj_id in enumerate(obj_ids):
if verbose:
print(
f"\r - Finding candidates from {category_dir.split('/')[-1]}: {i+1}/{len(obj_ids)}",
end="",
)
# Load the candidate object
obj_dir = os.path.join(category_dir, obj_id)
if os.path.exists(os.path.join(obj_dir, gt_file_name)):
with open(os.path.join(obj_dir, gt_file_name), "r") as f:
obj_dict = json.load(f)
if "diffuse_tree" not in obj_dict: # Rename for compatibility
obj_dict["diffuse_tree"] = obj_dict.pop("arti_tree")
# Compute metric for selecting the base if the hash matches or if there are no objects with the same hash
if obj_id in same_hash_obj_ids or len(same_hash_obj_ids) == 0:
scores = IoU_cDist(
requirement_dict,
obj_dict,
num_states=num_states,
compare_handles=metric_compare_handles,
iou_include_base=metric_iou_include_base,
num_samples=metric_num_samples,
)
base_score = scores["AS-cDist"]
# Add the candidate to the list of best candidates and keep the top k candidates
best_obj_candidates.append(
{
"category": category_dir.split("/")[-1],
"dir": obj_dir,
"score": base_score,
}
)
best_obj_candidates = sorted(
best_obj_candidates, key=lambda x: x["score"]
)[:keep_top]
if verbose:
print()
return best_obj_candidates
def pick_and_rescale_parts(
requirement_dict,
obj_candidates,
dataset_dir,
gt_file_name="object.json",
verbose=False,
):
"""
Pick and rescale parts from the object candidates
- requirement_dict: the object dictionary of the requirement\n
- obj_candidates: the list of best object candidates for selecting the base part\n
- dataset_dir: the directory of the dataset to search in\n
- gt_file_name (optional): the name of the ground truth file, which describes a candidate object\n
- verbose (optional): whether to print the progress\n
return:\n
- parts_to_render: a list of selected parts for the requirement parts in the form:
- [{name, dir, files, scale_factor=[sx, sy, sz]}, z_rotate_90]
- z_rotate_90 is True if the part needs to be rotated by 90 degrees around the z-axis
"""
# Extract requirement data
if 'acd' in dataset_dir:
all_categories = all_categories_acd
else:
all_categories = [
"Table",
"StorageFurniture",
"WashingMachine",
"Microwave",
"Dishwasher",
"Refrigerator",
"Oven",
]
requirement_part_names = []
requirement_part_bbox_sizes = []
for part in requirement_dict["diffuse_tree"]:
if part['name'] == 'wheel':
part['name'] = 'handle'
requirement_part_names.append(part["name"])
requirement_part_bbox_sizes.append(part["aabb"]["size"])
# Collect the unique part names and store the indices of the parts with the same name
unique_requirement_part_names = {}
for i, part_name in enumerate(requirement_part_names):
if part_name not in unique_requirement_part_names:
unique_requirement_part_names[part_name] = [i]
else:
unique_requirement_part_names[part_name].append(i)
parts_to_render = [{} for _ in range(len(requirement_part_names))]
# Iterate through the object candidates selected for the base part first
for candidate in obj_candidates:
if all(
[len(part) > 0 for part in parts_to_render]
): # Break if all parts are fulfilled
break
if not os.path.exists(os.path.join(candidate["dir"], gt_file_name)):
continue
# Load the candidate object
with open(os.path.join(candidate["dir"], gt_file_name), "r") as f:
candidate_dict = json.load(f)
# Pick parts from the candidate if the part name matches and the part requirement is not yet fulfilled
for candidate_part_idx, part in enumerate(candidate_dict["diffuse_tree"]):
part_needed = part["name"] in unique_requirement_part_names
if not part_needed:
continue
part_not_fulfilled = any(
[
len(parts_to_render[i]) == 0
for i in unique_requirement_part_names[part["name"]]
]
)
if not part_not_fulfilled:
continue
# Get the indices of the requirement parts that are fulfilled by this candidate part and their bounding box sizes
fullfill_part_idxs = unique_requirement_part_names[part["name"]]
fullfill_part_bbox_sizes = [
requirement_part_bbox_sizes[i] for i in fullfill_part_idxs
]
# Generate all output part dictionaries at once
part_dicts = _generate_output_part_dicts(
candidate_dict,
candidate_part_idx,
candidate["dir"],
fullfill_part_bbox_sizes,
verbose=verbose,
)
# Update the output part dictionaries
[
parts_to_render[part_idx].update(part_dicts[part_dict_idx])
for part_dict_idx, part_idx in enumerate(fullfill_part_idxs)
]
# If there are still parts that are not fulfilled
if any([len(part) == 0 for part in parts_to_render]):
# Collect the remaining part names
remaining_part_names = list(
set(
[
requirement_part_names[i]
for i in range(len(requirement_part_names))
if len(parts_to_render[i]) == 0
]
)
)
if verbose:
print(
f" - Parts {remaining_part_names} are not fulfilled by the selected candidates, searching in the dataset..."
)
# If the category is specified, only search in that category, otherwise search in all categories
# requirement_dict["meta"]["obj_cat"] = ""
requirement_category = requirement_dict["meta"]["obj_cat"]
if requirement_category == "StroageFurniture":
requirement_category = "StorageFurniture"
category_specified = requirement_category != ""
if category_specified:
category_dirs = [os.path.join(dataset_dir, requirement_category)]
else:
category_dirs = [
os.path.join(dataset_dir, category) for category in all_categories
]
# Iterate through all objects
retry = True # Retry if the category is specified, but some parts are still not fulfilled (See the end of the while loop)
retry_time = 0
while retry:
print(retry_time)
retry_time += 1
for category_dir in category_dirs:
obj_ids = os.listdir(category_dir)
random.shuffle(obj_ids) # Randomize the order of the objects
for i, obj_id in enumerate(obj_ids):
if True:
print(
f"- Finding missing parts from {category_dir.split('/')[-1]}: {i+1}/{len(obj_ids)} \n"
)
# Load the candidate object
obj_dir = os.path.join(category_dir, obj_id)
if not os.path.exists(os.path.join(obj_dir, gt_file_name)):
continue
with open(os.path.join(obj_dir, gt_file_name), "r") as f:
candidate_dict = json.load(f)
# Pick the part from the candidate if the part name matches and the parts that are not fulfilled
for candidate_part_idx, part in enumerate(
candidate_dict["diffuse_tree"]
):
part_needed = part["name"] in remaining_part_names
if part_needed:
# Get the indices of the requirement parts that are fulfilled by this candidate part and their bounding box sizes
fullfill_part_idxs = unique_requirement_part_names[
part["name"]
]
fullfill_part_bbox_sizes = [
requirement_part_bbox_sizes[i]
for i in fullfill_part_idxs
]
# Generate all output part dictionaries at once
part_dicts = _generate_output_part_dicts(
candidate_dict,
candidate_part_idx,
obj_dir,
fullfill_part_bbox_sizes,
verbose=verbose,
)
# Update the output part dictionaries
[
parts_to_render[part_idx].update(
part_dicts[part_dict_idx]
)
for part_dict_idx, part_idx in enumerate(
fullfill_part_idxs
)
]
if all([len(part) > 0 for part in parts_to_render]):
if verbose:
print(" -> Found all missing parts")
break
if all([len(part) > 0 for part in parts_to_render]):
retry = False
break
# If the category is specified, but some parts are still not fulfilled, search in all categories
if category_specified and any([len(part) == 0 for part in parts_to_render]):
if verbose:
print(
" - Required category is {requirement_category}, but some parts are still not fulfilled, searching in all categories..."
)
category_specified = False
retry = True
category_dirs = [
os.path.join(dataset_dir, category)
for category in all_categories
if category != requirement_category
]
# Raise error if there are still parts that are not fulfilled
if any([len(part) == 0 for part in parts_to_render]):
raise RuntimeError(
"Failed to fulfill all requirements, some parts may not exist in the dataset"
)
return parts_to_render
|