Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,816 Bytes
c28dddb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import os
import json
import torch
import imageio
import numpy as np
class SaverMixin():
@property
def save_dir(self):
return self.hparams.save_dir
def convert_format(self, data):
if isinstance(data, np.ndarray):
return data
elif isinstance(data, torch.Tensor):
return data.cpu().numpy()
elif isinstance(data, list):
return [self.convert_format(d) for d in data]
elif isinstance(data, dict):
return {k: self.convert_format(v) for k, v in data.items()}
else:
raise TypeError('Data must be in type numpy.ndarray, torch.Tensor, list or dict, getting', type(data))
def get_save_path(self, filename):
save_path = os.path.join(self.save_dir, filename)
os.makedirs(os.path.dirname(save_path), exist_ok=True)
return save_path
def save_rgb_image(self, filename, img):
imageio.imwrite(self.get_save_path(filename), img)
def save_rgb_video(self, filename, stage='fit', filter=None):
img_dir = os.path.join(self.logger.log_dir, 'images', stage)
writer_graph = imageio.get_writer(os.path.join(img_dir, filename), fps=1)
for file in sorted(os.listdir(img_dir)):
if file.endswith('.png') and 'gt' not in file:
if filter is not None:
if filter in file:
writer_graph.append_data(imageio.imread(os.path.join(img_dir, file)))
else:
writer_graph.append_data(imageio.imread(os.path.join(img_dir, file)))
writer_graph.close()
def save_json(self, filename, data):
save_path = self.get_save_path(filename)
with open(save_path, 'w') as f:
json.dump(data, f)
|