File size: 1,563 Bytes
8e92669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
import torch.nn as nn
import torch.nn.functional as F


class SharedEncoder(nn.Module):
    """共享特征编码器"""
    def __init__(self, channel_list):
        super().__init__()

        c1, c2, c3, c4, c5, d1, d2 = channel_list

        self.relu = nn.ReLU(inplace=True)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
        self.conv1a = torch.nn.Conv2d(1, c1, kernel_size=3, stride=1, padding=1)
        self.conv1b = torch.nn.Conv2d(c1, c1, kernel_size=3, stride=1, padding=1)
        self.conv2a = torch.nn.Conv2d(c1, c2, kernel_size=3, stride=1, padding=1)
        self.conv2b = torch.nn.Conv2d(c2, c2, kernel_size=3, stride=1, padding=1)
        self.conv3a = torch.nn.Conv2d(c2, c3, kernel_size=3, stride=1, padding=1)
        self.conv3b = torch.nn.Conv2d(c3, c3, kernel_size=3, stride=1, padding=1)
        self.conv4a = torch.nn.Conv2d(c3, c4, kernel_size=3, stride=1, padding=1)
        self.conv4b = torch.nn.Conv2d(c4, c4, kernel_size=3, stride=1, padding=1)

    def forward(self, x):
        # 第一层
        x = self.relu(self.conv1a(x))
        conv1 = self.relu(self.conv1b(x))
        x = self.pool(conv1)
        # 第二层
        x = self.relu(self.conv2a(x))
        conv2 = self.relu(self.conv2b(x))
        x = self.pool(conv2)
        # 第三层
        x = self.relu(self.conv3a(x))
        conv3 = self.relu(self.conv3b(x))
        x = self.pool(conv3)
        # 第四层
        x = self.relu(self.conv4a(x))
        x = self.relu(self.conv4b(x))
        
        return x, [conv1, conv2, conv3]