File size: 49,596 Bytes
931ed7c 16ec072 931ed7c 700e0b1 931ed7c 700e0b1 e3ce1b9 700e0b1 6849f7a e3ce1b9 700e0b1 931ed7c c8db90d 931ed7c e3ce1b9 700e0b1 931ed7c e3ce1b9 931ed7c e3ce1b9 700e0b1 e3ce1b9 931ed7c 1f6909b 931ed7c af587ff e3ce1b9 af587ff c3e2591 75420c6 c3e2591 1f6909b a4ee1dd 1f6909b c3e2591 931ed7c af587ff 931ed7c 700e0b1 1f6909b af587ff 1f6909b af587ff 1f6909b 700e0b1 c8db90d 310ce30 c8db90d 700e0b1 931ed7c 168ff98 17ae0e6 168ff98 310ce30 17ae0e6 e3ce1b9 f6ba112 310ce30 e3ce1b9 f624d23 f6ba112 310ce30 e3ce1b9 f4cd95e f6ba112 f4cd95e e3ce1b9 f6ba112 e3ce1b9 f624d23 310ce30 17ae0e6 310ce30 17ae0e6 168ff98 f624d23 310ce30 f624d23 f6ba112 310ce30 f6ba112 f624d23 310ce30 f4cd95e f6ba112 f624d23 168ff98 f624d23 168ff98 17ae0e6 310ce30 f624d23 17ae0e6 f624d23 17ae0e6 f624d23 f4cd95e 310ce30 f624d23 310ce30 f4cd95e f624d23 310ce30 f624d23 310ce30 168ff98 310ce30 168ff98 310ce30 168ff98 310ce30 168ff98 310ce30 168ff98 310ce30 168ff98 310ce30 168ff98 17ae0e6 168ff98 da28d95 168ff98 da28d95 168ff98 310ce30 f6ba112 310ce30 f6ba112 310ce30 f6ba112 f4cd95e f6ba112 f4cd95e f6ba112 f4cd95e f6ba112 da28d95 f6ba112 310ce30 168ff98 3bb5ec1 168ff98 17ae0e6 168ff98 3bb5ec1 168ff98 310ce30 17ae0e6 f6ba112 da28d95 f6ba112 da28d95 f6ba112 310ce30 168ff98 310ce30 168ff98 16ec072 b89934f 16ec072 931ed7c 1f6909b 931ed7c 59e6707 310ce30 59e6707 168ff98 931ed7c c20d437 931ed7c c20d437 e3ce1b9 c20d437 e3ce1b9 59e6707 931ed7c 168ff98 c20d437 59e6707 931ed7c 168ff98 c20d437 59e6707 931ed7c 168ff98 c20d437 931ed7c e3ce1b9 59e6707 e3ce1b9 59e6707 931ed7c 168ff98 c20d437 931ed7c c20d437 168ff98 931ed7c 168ff98 c20d437 931ed7c 168ff98 c20d437 168ff98 c20d437 e3ce1b9 931ed7c c20d437 e3ce1b9 931ed7c c20d437 931ed7c c20d437 931ed7c c20d437 931ed7c 168ff98 931ed7c e3ce1b9 931ed7c c20d437 168ff98 931ed7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 |
import os
import numpy as np
import torch
import nibabel as nib
from monai import transforms
from scipy import ndimage
from scipy.ndimage import binary_closing, binary_opening, binary_fill_holes, median_filter
from skimage.morphology import ball
from datetime import datetime
def validate_nifti(nifti_img):
shape = nifti_img.shape
if len(shape) < 3:
raise ValueError(f"Invalid NIfTI shape: {shape}. Expected at least 3 dimensions.")
if any(s <= 0 for s in shape):
raise ValueError(f"Invalid NIfTI shape: {shape}. All dimensions must be positive.")
if any(s > 2000 for s in shape):
raise ValueError(f"Volume too large: {shape}. Maximum dimension size is 2000.")
voxel_spacing = nifti_img.header.get_zooms()[:3] if len(nifti_img.header.get_zooms()) >= 3 else (1.0, 1.0, 1.0)
if any(sp <= 0 for sp in voxel_spacing):
raise ValueError(f"Invalid voxel spacing: {voxel_spacing}. All values must be positive.")
raw_data = nifti_img.get_fdata()
if np.isnan(raw_data).any():
raise ValueError("NIfTI contains NaN values")
if np.isinf(raw_data).any():
raise ValueError("NIfTI contains Inf values")
return True
def preprocess_nifti(file_path, device=None):
try:
print(f"Preprocessing file: {file_path}")
if not os.path.exists(file_path):
raise FileNotFoundError(f"File not found: {file_path}")
file_size = os.path.getsize(file_path) / (1024**2)
file_size_kb = os.path.getsize(file_path) / 1024
if file_size == 0:
raise ValueError("NIfTI file is empty")
if file_size > 2000:
raise ValueError(f"NIfTI file too large: {file_size:.1f} MB. Maximum processing size is 2 GB. For larger files, consider compression or resampling.")
if file_size_kb < 100:
print(f" β WARNING: File size is very small ({file_size_kb:.1f} KB). This may indicate:")
print(f" - Low resolution/compressed data (may lose texture and boundary cues)")
print(f" - Single slice upload (incomplete anatomy)")
print(f" - Data compression artifacts (may distort intensity gradients)")
print(f"Loading NIfTI file with nibabel...")
if file_size > 100:
nifti_img = nib.load(file_path, mmap=True)
else:
nifti_img = nib.load(file_path)
print(f"NIfTI shape: {nifti_img.shape}, dtype: {nifti_img.get_fdata().dtype}")
if len(nifti_img.shape) == 3:
if any(s < 10 for s in nifti_img.shape):
print(f" β WARNING: Very small dimension detected ({nifti_img.shape}). May be a single slice or cropped volume.")
if nifti_img.shape[2] < 20:
print(f" β WARNING: Only {nifti_img.shape[2]} slices detected. Model expects full 3D volumes for best results.")
validate_nifti(nifti_img)
voxel_spacing = nifti_img.header.get_zooms()[:3] if len(nifti_img.header.get_zooms()) >= 3 else (1.0, 1.0, 1.0)
if voxel_spacing == (1.0, 1.0, 1.0):
print(f" β WARNING: Voxel spacing is (1.0, 1.0, 1.0) - metadata may be missing or lost during conversion.")
print(f" This can cause incorrect volume calculations and scaling issues.")
affine = nifti_img.affine
affine_det = np.linalg.det(affine[:3, :3])
print(f" β Voxel spacing: {voxel_spacing}")
print(f" β Affine determinant: {affine_det:.6f}")
if abs(affine_det) < 0.1 or abs(affine_det) > 100:
print(f" β WARNING: Unusual affine determinant ({affine_det:.6f}). Spatial metadata may be corrupted.")
raw_data_dtype = nifti_img.get_fdata().dtype
if raw_data_dtype == np.uint8 or raw_data_dtype == np.uint16:
print(f" β WARNING: Input data type is {raw_data_dtype} (integer). Model expects float32.")
print(f" Integer data may indicate compression or conversion artifacts.")
print(f" Converting to float32, but quality may be reduced.")
raw_data = nifti_img.get_fdata(dtype=np.float32)
print(f" β Raw data stats: min={raw_data.min():.4f}, max={raw_data.max():.4f}, mean={raw_data.mean():.4f}, std={raw_data.std():.4f}")
if raw_data.max() - raw_data.min() < 1e-6:
raise ValueError(f"Input NIfTI file contains constant values (min=max={raw_data.min():.4f}). Cannot process.")
if raw_data.std() < 1e-3:
print(f" β WARNING: Very low data variance (std={raw_data.std():.4f}). Data may be corrupted or over-compressed.")
if raw_data.max() > 10000 or raw_data.min() < -1000:
print(f" β WARNING: Extreme intensity values detected (range: [{raw_data.min():.1f}, {raw_data.max():.1f}]).")
print(f" Data may not be properly normalized. Model expects normalized float32 tensors.")
nonzero_mask = raw_data > 1e-6
nonzero_count = nonzero_mask.sum()
total_count = raw_data.size
nonzero_ratio = nonzero_count / total_count if total_count > 0 else 0.0
print(f" β Non-zero voxels: {nonzero_count:,} / {total_count:,} ({100*nonzero_ratio:.2f}%)")
is_prenormalized = (raw_data.max() <= 1.0 and raw_data.min() >= 0.0)
if is_prenormalized:
print(f" β Detected pre-normalized data (range [0, 1]). Using minimal preprocessing.")
use_enhanced_preprocessing = os.environ.get("USE_ENHANCED_PREPROCESSING", "false").lower() == "true"
if is_prenormalized:
transform = transforms.Compose([
transforms.LoadImaged(keys=["image"]),
transforms.EnsureChannelFirstD(keys=["image"], channel_dim="no_channel"),
transforms.ToTensord(keys=["image"])
])
elif use_enhanced_preprocessing:
try:
transform = transforms.Compose([
transforms.LoadImaged(keys=["image"]),
transforms.Orientationd(keys=["image"], axcodes="RAS"),
transforms.Spacingd(keys=["image"], pixdim=(1.5, 1.5, 3.0), mode="bilinear"),
transforms.EnsureChannelFirstD(keys=["image"], channel_dim="no_channel"),
transforms.ScaleIntensityRangePercentilesd(keys="image", lower=2, upper=98, b_min=0.0, b_max=1.0, clip=True),
transforms.NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True),
transforms.ToTensord(keys=["image"])
])
print(" β Using enhanced preprocessing (orientation + spacing + percentile scaling)")
except Exception as e:
print(f" β Warning: Could not create enhanced transform pipeline: {e}. Falling back to training-matched preprocessing...")
use_enhanced_preprocessing = False
if not is_prenormalized and not use_enhanced_preprocessing:
transform = transforms.Compose([
transforms.LoadImaged(keys=["image"]),
transforms.EnsureChannelFirstD(keys=["image"], channel_dim="no_channel"),
transforms.NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True),
transforms.ToTensord(keys=["image"])
])
print(" β Using training-matched preprocessing (for optimal accuracy)")
data = {"image": file_path}
print("Applying transforms...")
try:
augmented = transform(data)
image_data = augmented["image"]
except Exception as e:
print(f" β Transform failed: {e}. Trying fallback preprocessing...")
try:
raw_data_norm = (raw_data - raw_data.min()) / (raw_data.max() - raw_data.min() + 1e-8)
if raw_data_norm.std() < 1e-6:
raise ValueError("Normalized data is still constant")
image_data = torch.from_numpy(raw_data_norm).float()
image_data = image_data.unsqueeze(0)
print(" β Used fallback normalization (min-max scaling)")
except Exception as e2:
raise ValueError(f"Both standard and fallback preprocessing failed: {e2}")
if not isinstance(image_data, torch.Tensor):
image_data = torch.from_numpy(np.array(image_data))
if image_data.dtype != torch.float32:
image_data = image_data.float()
img_np = image_data.numpy() if not hasattr(image_data, 'device') or image_data.device.type == 'cpu' else image_data.cpu().numpy()
vmin, vmax = float(img_np.min()), float(img_np.max())
if vmax - vmin < 1e-6:
print(f" β WARNING: Preprocessing produced near-constant image (min={vmin:.6f}, max={vmax:.6f}). Trying alternative preprocessing...")
try:
if nonzero_ratio > 0.01:
nonzero_mean = raw_data[nonzero_mask].mean()
nonzero_std = raw_data[nonzero_mask].std() + 1e-8
raw_data_norm = np.zeros_like(raw_data)
raw_data_norm[nonzero_mask] = (raw_data[nonzero_mask] - nonzero_mean) / nonzero_std
raw_data_norm = (raw_data_norm - raw_data_norm.min()) / (raw_data_norm.max() - raw_data_norm.min() + 1e-8)
else:
raw_data_norm = (raw_data - raw_data.min()) / (raw_data.max() - raw_data.min() + 1e-8)
if raw_data_norm.std() < 1e-6:
raise ValueError("Alternative normalization also produced constant data")
image_data = torch.from_numpy(raw_data_norm).float()
image_data = image_data.unsqueeze(0)
img_np = image_data.numpy()
vmin, vmax = float(img_np.min()), float(img_np.max())
print(f" β Alternative preprocessing successful: min={vmin:.4f}, max={vmax:.4f}, mean={img_np.mean():.4f}, std={img_np.std():.4f}")
except Exception as e3:
raise ValueError(f"Preprocessing produced near-constant image: min={vmin:.6f}, max={vmax:.6f}. Alternative preprocessing also failed: {e3}")
print(f" β After transforms: min={vmin:.4f}, max={vmax:.4f}, mean={img_np.mean():.4f}, std={img_np.std():.4f}")
if device is not None and device.type == 'cuda':
if image_data.is_pinned():
image_data = image_data.to(device, non_blocking=True)
else:
image_data = image_data.pin_memory().to(device, non_blocking=True)
if len(image_data.shape) >= 4:
try:
if hasattr(torch, "channels_last_3d"):
image_data = image_data.contiguous(memory_format=torch.channels_last_3d)
if image_data.is_contiguous(memory_format=torch.channels_last_3d):
print(f" β Using channels-last 3D memory layout (optimized for GPU)")
except:
pass
print(f"Preprocessed shape: {image_data.shape}, dtype: {image_data.dtype}, device: {image_data.device if hasattr(image_data, 'device') else 'CPU'}")
if image_data.numel() == 0:
raise ValueError("Preprocessed image is empty")
return image_data
except Exception as e:
error_msg = f"Preprocessing error: {e}"
print(f"β {error_msg}")
import traceback
traceback.print_exc()
raise ValueError(f"Failed to preprocess NIfTI file: {e}") from e
def refine_liver_mask_enhanced(mask, voxel_spacing, pred_probabilities, threshold, modality):
original_shape = mask.shape
original_sum = mask.sum()
was_4d = len(mask.shape) == 4
was_5d = len(mask.shape) == 5
if was_5d:
mask_3d = mask[0, 0, 0] if mask.shape[0] == 1 and mask.shape[1] == 1 and mask.shape[2] == 1 else mask[0, 0]
elif was_4d:
mask_3d = mask[0, 0] if mask.shape[0] == 1 and mask.shape[1] == 1 else mask[0]
else:
mask_3d = mask.copy()
if mask_3d.dtype != np.uint8:
mask_3d = (mask_3d > 0.5).astype(np.uint8)
if mask_3d.sum() == 0:
return np.zeros(original_shape, dtype=np.uint8), {
"original_voxels": 0, "refined_voxels": 0, "removed_voxels": 0,
"connected_components_before": 0, "connected_components_after": 0,
"volume_change_ml": 0.0, "volume_change_percent": 0.0,
"guards_ok": False
}, 0.0
H, W, D = mask_3d.shape
guards_ok = True
print(f" NOTE: Spatial priors assume RAS orientation (Right-Anterior-Superior).")
print(f" Input should be reoriented to RAS using nib.as_closest_canonical() before processing.")
print(f" If orientation is unknown, spatial priors may remove valid liver tissue.")
top_remove = max(1, int(0.15 * D))
mask_3d[:, :, :top_remove] = 0
if top_remove > 0:
print(f" Spatial prior: Removed top {top_remove} slices (15% - diaphragm protection, assumes Superior axis)")
right_trim = max(0, int(0.30 * W))
mask_3d[:, W-right_trim:, :] = 0
if right_trim > 0:
print(f" Spatial prior: Removed right {right_trim} pixels (30% - stomach protection, assumes Right axis)")
left_trim = max(0, int(0.15 * W))
mask_3d[:, :left_trim, :] = 0
if left_trim > 0:
print(f" Spatial prior: Removed left {left_trim} pixels (15% - spleen protection, assumes Left axis)")
bottom_remove = max(1, int(0.10 * D))
mask_3d[:, :, -bottom_remove:] = 0
if bottom_remove > 0:
print(f" Spatial prior: Removed bottom {bottom_remove} slices (10% - lower abdomen protection, assumes Inferior axis)")
if D > 2:
bottom_slices = mask_3d[:, :, -2:]
if bottom_slices.sum() > 0:
mask_3d[:, :, -2:] = 0
print(f" Bottom-cap trim: Removed bottom 2 slices (diaphragm protection)")
guards_ok = False
labels_before, num_components_before = ndimage.label(mask_3d)
if num_components_before == 0:
print(f" QC FAIL: No components after spatial priors. Attempting auto-rethreshold...")
guards_ok = False
if hasattr(pred_probabilities, 'shape') and len(pred_probabilities.shape) >= 3:
if len(pred_probabilities.shape) == 4:
pred_3d = pred_probabilities[0, 0]
elif len(pred_probabilities.shape) == 5:
pred_3d = pred_probabilities[0, 0, 0]
else:
pred_3d = pred_probabilities
top_remove = max(1, int(0.15 * D))
right_trim = max(0, int(0.30 * W))
left_trim = max(0, int(0.15 * W))
bottom_remove = max(1, int(0.10 * D))
for retry_threshold in [0.70, 0.65, 0.60, 0.55, 0.50]:
mask_retry = (pred_3d > retry_threshold).astype(np.uint8)
mask_retry[:, :, :top_remove] = 0
mask_retry[:, W-right_trim:, :] = 0
mask_retry[:, :left_trim, :] = 0
mask_retry[:, :, -bottom_remove:] = 0
if mask_retry.sum() > 1000:
mask_3d = mask_retry
print(f" Auto-rethreshold: Found mask at threshold {retry_threshold:.3f}")
break
else:
return np.zeros(original_shape, dtype=np.uint8), {
"original_voxels": original_sum, "refined_voxels": 0, "removed_voxels": int(original_sum),
"connected_components_before": 0, "connected_components_after": 0,
"volume_change_ml": 0.0, "volume_change_percent": -100.0,
"guards_ok": False
}, 0.0
labels_before, num_components_before = ndimage.label(mask_3d)
component_sizes = ndimage.sum(mask_3d, labels_before, range(1, num_components_before + 1))
largest_label = component_sizes.argmax() + 1
mask_3d = (labels_before == largest_label).astype(np.uint8)
print(f" Kept largest connected component ({component_sizes.max():,} voxels)")
coords = np.where(mask_3d > 0)
if len(coords[0]) > 0:
z_span = (coords[2].max() - coords[2].min() + 1) / D if D > 0 else 0
if z_span < 0.25:
print(f" QC FAIL: Z-span only {z_span*100:.1f}% (<25%). Attempting iterative rethreshold...")
guards_ok = False
if hasattr(pred_probabilities, 'shape') and len(pred_probabilities.shape) >= 3:
if len(pred_probabilities.shape) == 4:
pred_3d = pred_probabilities[0, 0]
elif len(pred_probabilities.shape) == 5:
pred_3d = pred_probabilities[0, 0, 0]
else:
pred_3d = pred_probabilities
best_mask = mask_3d
best_z_span = z_span
top_remove = max(1, int(0.12 * D))
right_trim = max(0, int(0.25 * W))
left_trim = max(0, int(0.10 * W))
for retry_threshold in [0.65, 0.60, 0.55, 0.50, 0.45, 0.40, 0.35]:
mask_retry = (pred_3d > retry_threshold).astype(np.uint8)
mask_retry[:, :, :top_remove] = 0
mask_retry[:, W-right_trim:, :] = 0
mask_retry[:, :left_trim, :] = 0
if mask_retry.sum() < 1000:
continue
labels_retry, _ = ndimage.label(mask_retry)
if labels_retry.max() > 0:
comp_sizes_retry = ndimage.sum(mask_retry, labels_retry, range(1, labels_retry.max() + 1))
largest_retry = comp_sizes_retry.argmax() + 1
mask_retry = (labels_retry == largest_retry).astype(np.uint8)
coords_retry = np.where(mask_retry > 0)
if len(coords_retry[0]) > 0:
z_span_retry = (coords_retry[2].max() - coords_retry[2].min() + 1) / D
if z_span_retry >= 0.25:
mask_3d = mask_retry
print(f" Auto-rethreshold SUCCESS: threshold={retry_threshold:.3f}, z-span={z_span_retry*100:.1f}%")
break
elif z_span_retry > best_z_span:
best_mask = mask_retry
best_z_span = z_span_retry
else:
if best_z_span > z_span:
mask_3d = best_mask
print(f" Auto-rethreshold: Using best z-span={best_z_span*100:.1f}% (still <25%)")
else:
print(f" Auto-rethreshold FAILED: No threshold yielded z-span >= 25%")
labels_before_morph, _ = ndimage.label(mask_3d)
if labels_before_morph.max() > 0:
component_sizes_before_morph = ndimage.sum(mask_3d, labels_before_morph, range(1, labels_before_morph.max() + 1))
if len(component_sizes_before_morph) > 0:
largest_label_before_morph = component_sizes_before_morph.argmax() + 1
mask_3d = (labels_before_morph == largest_label_before_morph).astype(np.uint8)
print(f" Kept largest component before morphology")
try:
mask_3d = mask_3d.astype(bool)
structure = ball(2)
mask_3d = binary_closing(mask_3d, structure=structure)
mask_3d = mask_3d.astype(np.uint8)
print(f" Applied binary closing (ball radius=2)")
except Exception as e:
print(f" Binary closing failed: {e}")
try:
mask_3d = mask_3d.astype(bool)
mask_3d = binary_fill_holes(mask_3d)
mask_3d = mask_3d.astype(np.uint8)
print(f" Filled holes")
except Exception as e:
print(f" Hole filling failed: {e}")
try:
mask_3d = median_filter(mask_3d, size=3)
print(f" Applied 3D median filter (size=3)")
except Exception as e:
print(f" Median filter failed: {e}")
labels_after_morph, _ = ndimage.label(mask_3d)
if labels_after_morph.max() > 0:
component_sizes_morph = ndimage.sum(mask_3d, labels_after_morph, range(1, labels_after_morph.max() + 1))
if len(component_sizes_morph) > 0:
largest_label_morph = component_sizes_morph.argmax() + 1
mask_3d = (labels_after_morph == largest_label_morph).astype(np.uint8)
print(f" Re-kept largest component after morphology")
labels_after, num_components_after = ndimage.label(mask_3d)
refined_sum = mask_3d.sum()
removed_voxels = int(np.int64(original_sum) - np.int64(refined_sum))
voxel_volume = voxel_spacing[0] * voxel_spacing[1] * voxel_spacing[2]
volume_change_ml = (removed_voxels * voxel_volume) / 1000.0
volume_change_percent = (removed_voxels / float(original_sum) * 100.0) if original_sum > 0 else 0.0
volume_ml = (refined_sum * voxel_volume) / 1000.0
coords_final = np.where(mask_3d > 0)
if len(coords_final[0]) > 0:
z_span_final = (coords_final[2].max() - coords_final[2].min() + 1) / D if D > 0 else 0
x_centroid = np.mean(coords_final[1]) if len(coords_final) > 1 else W / 2
y_centroid = np.mean(coords_final[0]) if len(coords_final) > 0 else H / 2
if volume_ml < 800 or volume_ml > 2500:
print(f" QC FAIL: Volume {volume_ml:.1f}ml outside normal range [800-2500ml]")
guards_ok = False
if z_span_final < 0.20:
print(f" QC FAIL: Z-span {z_span_final*100:.1f}% too small (<20%)")
guards_ok = False
liver_x_min = 0.15 * W
liver_x_max = 0.55 * W
if x_centroid < liver_x_min or x_centroid > liver_x_max:
print(f" QC FAIL: x-centroid {x_centroid:.1f} outside expected liver band [15%-55% of width]")
guards_ok = False
liver_y_min = 0.25 * H
liver_y_max = 0.75 * H
if y_centroid < liver_y_min or y_centroid > liver_y_max:
print(f" QC FAIL: y-centroid {y_centroid:.1f} outside expected liver band [25%-75% of height]")
guards_ok = False
if volume_ml < 800:
print(f" QC WARNING: Volume {volume_ml:.1f}ml suspiciously low - may be wrong organ")
guards_ok = False
if volume_change_percent > 80:
print(f" QC FAIL: Refinement removed {volume_change_percent:.1f}% - too aggressive")
guards_ok = False
if was_5d:
if original_shape[0] == 1 and original_shape[1] == 1 and original_shape[2] == 1:
mask_3d = mask_3d[np.newaxis, np.newaxis, np.newaxis, :, :, :]
else:
mask_3d = mask_3d[np.newaxis, np.newaxis, :, :, :]
elif was_4d:
if original_shape[0] == 1 and original_shape[1] == 1:
mask_3d = mask_3d[np.newaxis, np.newaxis, :, :, :]
else:
mask_3d = mask_3d[np.newaxis, :, :, :]
mask_3d = mask_3d.astype(np.uint8)
if mask_3d.shape != original_shape:
if len(original_shape) == 3:
while mask_3d.ndim > 3:
mask_3d = mask_3d.squeeze(0)
elif len(original_shape) == 4:
while mask_3d.ndim < 4:
mask_3d = mask_3d[np.newaxis, ...]
while mask_3d.ndim > 4:
mask_3d = mask_3d.squeeze(0)
elif len(original_shape) == 5:
while mask_3d.ndim < 5:
mask_3d = mask_3d[np.newaxis, ...]
while mask_3d.ndim > 5:
mask_3d = mask_3d.squeeze(0)
print(f" Refinement complete: {original_sum:,} -> {refined_sum:,} voxels ({removed_voxels:,} removed, {volume_change_percent:.2f}%)")
print(f" Connected components: {num_components_before} -> {num_components_after}")
confidence_score = calculate_confidence_score(mask_3d, pred_probabilities, threshold, num_components_after, volume_change_percent, guards_ok, voxel_spacing)
metrics = {
"original_voxels": int(original_sum),
"refined_voxels": int(refined_sum),
"removed_voxels": removed_voxels,
"connected_components_before": int(num_components_before),
"connected_components_after": int(num_components_after),
"volume_change_ml": float(volume_change_ml),
"volume_change_percent": float(volume_change_percent),
"guards_ok": guards_ok
}
return mask_3d, metrics, confidence_score
def calculate_confidence_score(mask, pred_probabilities, threshold, num_components, volume_change_percent, guards_ok=True, voxel_spacing=(1.0, 1.0, 1.0)):
if mask.sum() == 0:
return 0.0
if len(mask.shape) == 4:
mask_3d = mask[0, 0]
elif len(mask.shape) == 5:
mask_3d = mask[0, 0, 0]
else:
mask_3d = mask
if len(pred_probabilities.shape) == 4:
pred_3d = pred_probabilities[0, 0]
elif len(pred_probabilities.shape) == 5:
pred_3d = pred_probabilities[0, 0, 0]
else:
pred_3d = pred_probabilities
mask_indices = mask_3d > 0
if mask_indices.sum() == 0:
return 0.0
avg_p = float(np.clip(pred_3d[mask_indices].mean(), 0.0, 1.0))
comp_pen = 1.0 if num_components == 1 else max(0.5, 1.0 - 0.1 * (num_components - 1))
vol_pen = 1.0 if abs(volume_change_percent) < 50 else 0.7
if not guards_ok:
guard_pen = 0.5
else:
guard_pen = 1.0
volume_ml = (mask_3d.sum() * (voxel_spacing[0] * voxel_spacing[1] * voxel_spacing[2])) / 1000.0
if volume_ml < 800:
volume_penalty = 0.5
elif volume_ml < 1000:
volume_penalty = 0.7
elif volume_ml < 1200:
volume_penalty = 0.9
else:
volume_penalty = 1.0
confidence = 100 * avg_p * comp_pen * vol_pen * guard_pen * volume_penalty
confidence = float(np.clip(confidence, 0, 100))
return confidence
def refine_liver_mask(mask, voxel_spacing=(1.0, 1.0, 1.0), enable_smoothing=True, min_component_size=None):
"""
Refine liver segmentation mask to remove fragmentation, smooth boundaries, and ensure single connected component.
Args:
mask: 3D or 4D numpy array (H, W, D) or (1, 1, H, W, D) with binary values (0 or 1)
voxel_spacing: Tuple of (z, y, x) voxel spacing in mm
enable_smoothing: Whether to apply median filter smoothing (default: True)
min_component_size: Minimum size for connected components to keep (None = keep only largest)
Returns:
refined_mask: Refined binary mask (same shape as input)
metrics: Dictionary with refinement statistics
"""
original_shape = mask.shape
original_sum = mask.sum()
was_4d = len(mask.shape) == 4
was_5d = len(mask.shape) == 5
if was_5d:
mask = mask[0, 0, 0] if mask.shape[0] == 1 and mask.shape[1] == 1 and mask.shape[2] == 1 else mask[0, 0]
elif was_4d:
mask = mask[0, 0] if mask.shape[0] == 1 and mask.shape[1] == 1 else mask[0]
if mask.dtype != np.uint8:
mask = (mask > 0.5).astype(np.uint8)
if mask.sum() == 0:
print(" β Empty mask - no refinement possible")
return np.zeros(original_shape, dtype=np.uint8), {
"original_voxels": 0,
"refined_voxels": 0,
"removed_voxels": 0,
"connected_components_before": 0,
"connected_components_after": 0,
"volume_change_ml": 0.0,
"volume_change_percent": 0.0
}
labels_before, num_components_before = ndimage.label(mask)
if num_components_before == 0:
print(" β No connected components found")
return np.zeros(original_shape, dtype=np.uint8), {
"original_voxels": original_sum,
"refined_voxels": 0,
"removed_voxels": int(original_sum),
"connected_components_before": 0,
"connected_components_after": 0,
"volume_change_ml": 0.0,
"volume_change_percent": -100.0
}
component_sizes = ndimage.sum(mask, labels_before, range(1, num_components_before + 1))
if min_component_size is None:
largest_label = component_sizes.argmax() + 1
mask = (labels_before == largest_label).astype(np.uint8)
print(f" β Kept largest connected component ({component_sizes.max():,} voxels)")
else:
valid_labels = np.where(component_sizes >= min_component_size)[0] + 1
if len(valid_labels) == 0:
largest_label = component_sizes.argmax() + 1
mask = (labels_before == largest_label).astype(np.uint8)
print(f" β No components >= {min_component_size} voxels, kept largest ({component_sizes.max():,} voxels)")
else:
mask = np.isin(labels_before, valid_labels).astype(np.uint8)
print(f" β Kept {len(valid_labels)} component(s) >= {min_component_size} voxels")
after_cc = mask.sum()
try:
structure = ball(3)
mask = binary_closing(mask, structure=structure)
print(f" β Applied binary closing (ball radius=3)")
except Exception as e:
print(f" β Binary closing failed: {e}")
try:
mask = binary_fill_holes(mask)
print(f" β Filled holes")
except Exception as e:
print(f" β Hole filling failed: {e}")
try:
structure = ball(2)
mask = binary_opening(mask, structure=structure)
print(f" β Applied binary opening (ball radius=2)")
except Exception as e:
print(f" β Binary opening failed: {e}")
if enable_smoothing:
try:
mask = median_filter(mask, size=3)
print(f" β Applied 3D median filter (size=3)")
except Exception as e:
print(f" β Median filter failed: {e}")
labels_after, num_components_after = ndimage.label(mask)
refined_sum = mask.sum()
removed_voxels = int(original_sum - refined_sum)
voxel_volume = voxel_spacing[0] * voxel_spacing[1] * voxel_spacing[2]
volume_change_ml = (removed_voxels * voxel_volume) / 1000.0
volume_change_percent = (removed_voxels / original_sum * 100.0) if original_sum > 0 else 0.0
if was_5d:
if original_shape[0] == 1 and original_shape[1] == 1 and original_shape[2] == 1:
mask = mask[np.newaxis, np.newaxis, np.newaxis, :, :, :]
else:
mask = mask[np.newaxis, np.newaxis, :, :, :]
elif was_4d:
if original_shape[0] == 1 and original_shape[1] == 1:
mask = mask[np.newaxis, np.newaxis, :, :, :]
else:
mask = mask[np.newaxis, :, :, :]
mask = mask.astype(np.uint8)
if mask.shape != original_shape:
print(f" β Shape mismatch: {mask.shape} vs {original_shape}, fixing...")
if len(original_shape) == 3:
while mask.ndim > 3:
mask = mask.squeeze(0)
elif len(original_shape) == 4:
while mask.ndim < 4:
mask = mask[np.newaxis, ...]
while mask.ndim > 4:
mask = mask.squeeze(0)
elif len(original_shape) == 5:
while mask.ndim < 5:
mask = mask[np.newaxis, ...]
while mask.ndim > 5:
mask = mask.squeeze(0)
print(f" β Refinement complete: {original_sum:,} β {refined_sum:,} voxels ({removed_voxels:,} removed, {volume_change_percent:.2f}%)")
print(f" β Connected components: {num_components_before} β {num_components_after}")
metrics = {
"original_voxels": int(original_sum),
"refined_voxels": int(refined_sum),
"removed_voxels": removed_voxels,
"connected_components_before": int(num_components_before),
"connected_components_after": int(num_components_after),
"volume_change_ml": float(volume_change_ml),
"volume_change_percent": float(volume_change_percent)
}
return mask, metrics
def calculate_liver_volume(pred_binary, voxel_spacing=(1.0, 1.0, 1.0)):
voxel_volume = voxel_spacing[0] * voxel_spacing[1] * voxel_spacing[2]
liver_voxels = pred_binary.sum()
volume_ml = liver_voxels * voxel_volume / 1000.0
return volume_ml
def analyze_liver_morphology(pred_binary):
if len(pred_binary.shape) == 4:
mask_3d = pred_binary[0]
elif len(pred_binary.shape) == 5:
mask_3d = pred_binary[0, 0]
else:
mask_3d = pred_binary
labeled_mask, num_features = ndimage.label(mask_3d)
if num_features == 0:
return {"connected_components": 0, "largest_component_ratio": 0.0, "fragmentation": "high"}
component_sizes = [np.sum(labeled_mask == i) for i in range(1, num_features + 1)]
largest_component = max(component_sizes)
total_liver = pred_binary.sum()
largest_ratio = largest_component / total_liver if total_liver > 0 else 0.0
if largest_ratio > 0.95:
fragmentation = "low"
elif largest_ratio > 0.80:
fragmentation = "moderate"
else:
fragmentation = "high"
return {
"connected_components": int(num_features),
"largest_component_ratio": float(largest_ratio),
"fragmentation": fragmentation
}
def check_volume_sanity(volume_ml):
normal_range = (float(os.getenv("LIVER_VOL_LOW", "1200")), float(os.getenv("LIVER_VOL_HIGH", "1800")))
if volume_ml < normal_range[0] * 0.5:
return "CRITICAL", f"Volume ({volume_ml:.1f} ml) is extremely low (<50% of normal). Please visually inspect overlay for segmentation errors."
elif volume_ml < normal_range[0]:
return "WARNING", f"Volume ({volume_ml:.1f} ml) is below normal range. Please visually inspect overlay."
elif volume_ml > normal_range[1] * 1.5:
return "CRITICAL", f"Volume ({volume_ml:.1f} ml) is extremely high (>150% of normal). Please visually inspect overlay for segmentation errors."
elif volume_ml > normal_range[1]:
return "WARNING", f"Volume ({volume_ml:.1f} ml) is above normal range. Please visually inspect overlay."
return "OK", None
def generate_medical_report(statistics, volume_ml, morphology, modality, confidence_score=0.0):
liver_percentage = statistics["liver_percentage"]
volume_shape = statistics["volume_shape"]
liver_voxels = statistics.get("liver_voxels", 0)
total_voxels = statistics.get("total_voxels", 0)
normal_liver_volume_range = (1200, 1800)
normal_liver_percentage_range = (2.0, 3.5)
findings = []
recommendations = []
clinical_notes = []
quality_assessment = []
if liver_voxels == 0:
severity = "failure"
status = "FAILURE"
findings.append("**SEGMENTATION FAILURE:** No liver tissue detected (0 voxels segmented).")
recommendations.append("**CRITICAL:** Segmentation failed completely. Possible causes:")
recommendations.append(" β’ Input quality issues (low resolution, compression, missing metadata)")
recommendations.append(" β’ Threshold too high for prediction distribution")
recommendations.append(" β’ Model mismatch with input modality or preprocessing")
recommendations.append(" β’ Please check input file quality and try again, or contact support.")
clinical_notes.append("The automated segmentation system failed to identify any liver tissue. This indicates a technical failure rather than an anatomical finding.")
quality_assessment.append("**Segmentation Failure:** No voxels were segmented. Manual review and re-processing required.")
impression_parts = ["Automated liver segmentation FAILED. No liver tissue was detected."]
impression_parts.append("This is a technical failure requiring investigation of input quality and model compatibility.")
else:
severity = "normal"
status = "NORMAL"
num_components = morphology.get("connected_components", 1)
largest_ratio = morphology.get("largest_component_ratio", 1.0)
if num_components > 1 and largest_ratio < 0.9:
severity = "critical"
status = "CRITICAL"
findings.append(f"**CRITICAL: Fragmented Segmentation:** {num_components} disconnected components detected. Largest component is only {largest_ratio*100:.1f}% of total volume.")
recommendations.append("**URGENT:** Segmentation shows severe fragmentation. Manual correction required.")
clinical_notes.append("The segmentation contains multiple disconnected regions, indicating possible segmentation artifacts or severe anatomical abnormalities.")
elif volume_ml < normal_liver_volume_range[0] * 0.5 or volume_ml > normal_liver_volume_range[1] * 1.5:
if confidence_score < 50:
severity = "critical"
status = "CRITICAL"
else:
severity = "moderate"
status = "WARNING"
elif volume_ml < normal_liver_volume_range[0] or volume_ml > normal_liver_volume_range[1]:
severity = "moderate"
status = "WARNING"
volume_sanity_status, volume_sanity_msg = check_volume_sanity(volume_ml)
if volume_sanity_status == "CRITICAL":
if severity != "critical":
severity = "critical"
status = "CRITICAL"
findings.append(f"**CRITICAL FINDING:** {volume_sanity_msg}")
recommendations.append("**URGENT:** Visual inspection and manual review required. Segmentation may contain significant errors that could affect clinical interpretation.")
clinical_notes.append("The automated segmentation has produced results that fall outside expected physiological ranges. This may indicate technical issues with the segmentation algorithm or unusual patient anatomy.")
elif volume_sanity_status == "WARNING":
if severity == "normal":
severity = "moderate"
status = "WARNING"
findings.append(f"**WARNING:** {volume_sanity_msg}")
recommendations.append("Visual inspection recommended to verify segmentation accuracy and ensure clinical validity.")
clinical_notes.append("The segmentation results are outside the typical range but may still be clinically valid depending on patient-specific factors.")
clinical_notes.append("Note: Normal liver volume range (1200-1800 ml) is for average adult body size. Pediatric patients or extreme body sizes may have different normal ranges.")
if volume_ml < normal_liver_volume_range[0]:
findings.append(f"**Liver Volume Assessment:** Measured liver volume is **{volume_ml:.1f} ml**, which is below the normal reference range of {normal_liver_volume_range[0]}-{normal_liver_volume_range[1]} ml.")
clinical_notes.append(f"This represents approximately **{((normal_liver_volume_range[0] - volume_ml) / normal_liver_volume_range[0] * 100):.1f}% reduction** compared to the lower limit of normal. Possible etiologies include:")
clinical_notes.append(" β’ Chronic liver disease with parenchymal loss")
clinical_notes.append(" β’ Post-surgical resection")
clinical_notes.append(" β’ Cirrhosis with volume loss")
clinical_notes.append(" β’ Age-related atrophy")
recommendations.append("Consider follow-up imaging to monitor liver volume changes over time. Correlation with clinical history and liver function tests is recommended.")
if severity == "normal":
severity = "mild" if volume_ml > normal_liver_volume_range[0] * 0.7 else "moderate"
elif volume_ml > normal_liver_volume_range[1]:
findings.append(f"**Liver Volume Assessment:** Measured liver volume is **{volume_ml:.1f} ml**, which exceeds the normal reference range of {normal_liver_volume_range[0]}-{normal_liver_volume_range[1]} ml.")
clinical_notes.append(f"This represents approximately **{((volume_ml - normal_liver_volume_range[1]) / normal_liver_volume_range[1] * 100):.1f}% increase** compared to the upper limit of normal, consistent with hepatomegaly. Potential causes include:")
clinical_notes.append(" β’ Fatty liver disease (steatosis)")
clinical_notes.append(" β’ Congestive hepatopathy")
clinical_notes.append(" β’ Inflammatory conditions")
clinical_notes.append(" β’ Storage diseases")
clinical_notes.append(" β’ Neoplastic processes")
recommendations.append("Further clinical evaluation recommended to identify underlying etiology. Consider correlation with laboratory findings, clinical history, and additional imaging studies.")
if severity == "normal":
severity = "mild" if volume_ml < normal_liver_volume_range[1] * 1.3 else "moderate"
else:
findings.append(f"**Liver Volume Assessment:** Measured liver volume is **{volume_ml:.1f} ml**, which falls within the normal reference range of {normal_liver_volume_range[0]}-{normal_liver_volume_range[1]} ml.")
clinical_notes.append("The liver volume is within expected physiological parameters for an adult patient.")
if morphology["connected_components"] > 1:
if morphology["largest_component_ratio"] < 0.9:
if severity != "critical":
severity = "critical"
status = "CRITICAL"
findings.append(f"**CRITICAL: Fragmented Segmentation:** The liver segmentation identified **{morphology['connected_components']} separate connected components**. The largest component represents only **{morphology['largest_component_ratio']*100:.1f}%** of the total segmented volume.")
quality_assessment.append("**Severe Fragmentation Detected:** Multiple disconnected regions suggest possible segmentation artifacts or severe anatomical variations.")
recommendations.append("**URGENT:** Manual review and correction required. Fragmentation indicates potential segmentation errors.")
elif morphology["largest_component_ratio"] < 0.95:
if severity == "normal":
severity = "moderate"
status = "WARNING"
findings.append(f"**Segmentation Quality:** The liver segmentation identified **{morphology['connected_components']} separate connected components**. The largest component represents **{morphology['largest_component_ratio']*100:.1f}%** of the total segmented volume.")
quality_assessment.append("**Moderate Fragmentation Detected:** Multiple disconnected regions suggest possible segmentation artifacts or anatomical variations.")
quality_assessment.append("Post-processing filters (largest-component selection, hole-filling, morphological operations) have been applied to optimize the segmentation.")
recommendations.append("Review the segmentation overlay carefully. The presence of multiple components may indicate:")
recommendations.append(" β’ Segmentation artifacts requiring manual correction")
recommendations.append(" β’ Anatomical variants (e.g., accessory liver lobes)")
recommendations.append(" β’ Pathological processes causing liver fragmentation")
else:
findings.append(f"**Segmentation Quality:** The liver segmentation shows **{morphology['connected_components']} components**, with the largest component comprising **{morphology['largest_component_ratio']*100:.1f}%** of the total volume, indicating good segmentation continuity.")
quality_assessment.append("The segmentation demonstrates good connectivity with a dominant main component.")
else:
quality_assessment.append("**Excellent Segmentation Quality:** Single connected component indicates robust segmentation with good anatomical continuity.")
if morphology["fragmentation"] == "high":
findings.append(f"**High Fragmentation Detected:** The liver segmentation demonstrates high morphological fragmentation, which may reflect irregular liver surface or segmentation challenges.")
quality_assessment.append("High fragmentation suggests the liver may have irregular borders or that the segmentation encountered challenging anatomical features.")
recommendations.append("Manual review and potential refinement of the segmentation may be beneficial for optimal clinical interpretation.")
if severity == "normal":
severity = "mild"
elif morphology["fragmentation"] == "moderate":
quality_assessment.append("Moderate fragmentation observed, which is acceptable for clinical use but may benefit from review.")
else:
quality_assessment.append("Low fragmentation indicates smooth, well-defined liver boundaries.")
if liver_percentage < normal_liver_percentage_range[0]:
findings.append(f"**Spatial Distribution:** The liver occupies **{liver_percentage:.2f}%** of the total scan volume, which is below the typical range of {normal_liver_percentage_range[0]}-{normal_liver_percentage_range[1]}%.")
clinical_notes.append("This may reflect a smaller liver relative to the field of view, or indicate that the scan includes a larger portion of the abdomen.")
elif liver_percentage > normal_liver_percentage_range[1]:
findings.append(f"**Spatial Distribution:** The liver occupies **{liver_percentage:.2f}%** of the total scan volume, which is above the typical range.")
clinical_notes.append("This may indicate an enlarged liver or a scan field of view focused on the upper abdomen.")
else:
findings.append(f"**Spatial Distribution:** The liver occupies **{liver_percentage:.2f}%** of the scan volume, within the expected range.")
if total_voxels > 0:
voxel_density = liver_voxels / total_voxels * 100
quality_assessment.append(f"**Segmentation Coverage:** {liver_voxels:,} voxels segmented out of {total_voxels:,} total voxels ({voxel_density:.2f}% coverage).")
if volume_shape:
quality_assessment.append(f"**Image Dimensions:** {volume_shape[0]} Γ {volume_shape[1]} Γ {volume_shape[2]} voxels")
impression_parts = []
if severity == "normal":
impression_parts.append("Automated liver segmentation completed successfully using the SRMA-Mamba deep learning model.")
impression_parts.append("The segmentation demonstrates good quality with measurements within expected physiological ranges.")
elif severity == "mild":
impression_parts.append("Automated liver segmentation completed with minor findings.")
impression_parts.append("The segmentation is generally acceptable but requires clinical correlation and visual review.")
elif severity == "moderate":
impression_parts.append("Automated liver segmentation completed with notable findings requiring attention.")
impression_parts.append("Visual inspection and clinical correlation are recommended to ensure accuracy.")
elif severity == "critical":
impression_parts.append("Automated liver segmentation completed with critical findings.")
impression_parts.append("Immediate visual inspection and manual review are strongly recommended.")
impression_parts.append(f"**{len(findings)} key finding(s)** identified during automated analysis.")
report = {
"patient_id": "N/A",
"study_date": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"modality": modality.upper(),
"status": status,
"findings": findings,
"clinical_notes": clinical_notes,
"quality_assessment": quality_assessment,
"measurements": {
"liver_volume_ml": round(volume_ml, 2),
"liver_volume_liters": round(volume_ml / 1000.0, 3),
"liver_percentage": round(liver_percentage, 2),
"liver_voxels": int(liver_voxels),
"total_voxels": int(total_voxels),
"volume_shape": volume_shape,
"morphology": morphology,
"confidence_score": round(confidence_score, 1)
},
"impression": " ".join(impression_parts) if liver_voxels > 0 else impression_parts[0] if impression_parts else "Segmentation failed.",
"recommendations": recommendations,
"severity": severity,
"methodology": "SRMA-Mamba: State Space Model for Medical Image Segmentation using Mamba architecture with sliding window inference",
"disclaimer": "**IMPORTANT:** This is an automated analysis generated by artificial intelligence. Results should be reviewed and validated by a qualified radiologist or physician. This report is not intended for diagnostic use without appropriate clinical correlation and professional medical interpretation."
}
return report
|