Spaces:
Build error
Build error
Refactor
Browse files
app.py
CHANGED
|
@@ -3,35 +3,17 @@
|
|
| 3 |
from __future__ import annotations
|
| 4 |
|
| 5 |
import argparse
|
| 6 |
-
import os
|
| 7 |
import pathlib
|
| 8 |
-
import subprocess
|
| 9 |
-
import sys
|
| 10 |
import tarfile
|
| 11 |
|
| 12 |
-
if os.getenv('SYSTEM') == 'spaces':
|
| 13 |
-
import mim
|
| 14 |
-
|
| 15 |
-
mim.uninstall('mmcv-full', confirm_yes=True)
|
| 16 |
-
mim.install('mmcv-full==1.5.0', is_yes=True)
|
| 17 |
-
|
| 18 |
-
subprocess.call('pip uninstall -y opencv-python'.split())
|
| 19 |
-
subprocess.call('pip uninstall -y opencv-python-headless'.split())
|
| 20 |
-
subprocess.call('pip install opencv-python-headless==4.5.5.64'.split())
|
| 21 |
-
|
| 22 |
import gradio as gr
|
| 23 |
-
import huggingface_hub
|
| 24 |
-
import numpy as np
|
| 25 |
-
import torch
|
| 26 |
-
import torch.nn as nn
|
| 27 |
|
| 28 |
-
|
| 29 |
|
| 30 |
-
|
| 31 |
-
from mmpose.apis import (inference_top_down_pose_model, init_pose_model,
|
| 32 |
-
process_mmdet_results, vis_pose_result)
|
| 33 |
|
| 34 |
-
|
|
|
|
| 35 |
|
| 36 |
|
| 37 |
def parse_args() -> argparse.Namespace:
|
|
@@ -46,168 +28,6 @@ def parse_args() -> argparse.Namespace:
|
|
| 46 |
return parser.parse_args()
|
| 47 |
|
| 48 |
|
| 49 |
-
class DetModel:
|
| 50 |
-
def __init__(self, device: str | torch.device):
|
| 51 |
-
self.device = torch.device(device)
|
| 52 |
-
self.models = self._load_models()
|
| 53 |
-
self.model_name = 'YOLOX-l'
|
| 54 |
-
|
| 55 |
-
def _load_models(self) -> dict[str, nn.Module]:
|
| 56 |
-
model_dict = {
|
| 57 |
-
'YOLOX-tiny': {
|
| 58 |
-
'config':
|
| 59 |
-
'mmdet_configs/configs/yolox/yolox_tiny_8x8_300e_coco.py',
|
| 60 |
-
'model':
|
| 61 |
-
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_tiny_8x8_300e_coco/yolox_tiny_8x8_300e_coco_20211124_171234-b4047906.pth',
|
| 62 |
-
},
|
| 63 |
-
'YOLOX-s': {
|
| 64 |
-
'config':
|
| 65 |
-
'mmdet_configs/configs/yolox/yolox_s_8x8_300e_coco.py',
|
| 66 |
-
'model':
|
| 67 |
-
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_s_8x8_300e_coco/yolox_s_8x8_300e_coco_20211121_095711-4592a793.pth',
|
| 68 |
-
},
|
| 69 |
-
'YOLOX-l': {
|
| 70 |
-
'config':
|
| 71 |
-
'mmdet_configs/configs/yolox/yolox_l_8x8_300e_coco.py',
|
| 72 |
-
'model':
|
| 73 |
-
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth',
|
| 74 |
-
},
|
| 75 |
-
'YOLOX-x': {
|
| 76 |
-
'config':
|
| 77 |
-
'mmdet_configs/configs/yolox/yolox_x_8x8_300e_coco.py',
|
| 78 |
-
'model':
|
| 79 |
-
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_x_8x8_300e_coco/yolox_x_8x8_300e_coco_20211126_140254-1ef88d67.pth',
|
| 80 |
-
},
|
| 81 |
-
}
|
| 82 |
-
models = {
|
| 83 |
-
key: init_detector(dic['config'], dic['model'], device=self.device)
|
| 84 |
-
for key, dic in model_dict.items()
|
| 85 |
-
}
|
| 86 |
-
return models
|
| 87 |
-
|
| 88 |
-
def set_model_name(self, name: str) -> None:
|
| 89 |
-
self.model_name = name
|
| 90 |
-
|
| 91 |
-
def detect_and_visualize(
|
| 92 |
-
self, image: np.ndarray,
|
| 93 |
-
score_threshold: float) -> tuple[list[np.ndarray], np.ndarray]:
|
| 94 |
-
out = self.detect(image)
|
| 95 |
-
vis = self.visualize_detection_results(image, out, score_threshold)
|
| 96 |
-
return out, vis
|
| 97 |
-
|
| 98 |
-
def detect(self, image: np.ndarray) -> list[np.ndarray]:
|
| 99 |
-
image = image[:, :, ::-1] # RGB -> BGR
|
| 100 |
-
model = self.models[self.model_name]
|
| 101 |
-
out = inference_detector(model, image)
|
| 102 |
-
return out
|
| 103 |
-
|
| 104 |
-
def visualize_detection_results(
|
| 105 |
-
self,
|
| 106 |
-
image: np.ndarray,
|
| 107 |
-
detection_results: list[np.ndarray],
|
| 108 |
-
score_threshold: float = 0.3) -> np.ndarray:
|
| 109 |
-
person_det = [detection_results[0]] + [np.array([]).reshape(0, 5)]
|
| 110 |
-
|
| 111 |
-
image = image[:, :, ::-1] # RGB -> BGR
|
| 112 |
-
model = self.models[self.model_name]
|
| 113 |
-
vis = model.show_result(image,
|
| 114 |
-
person_det,
|
| 115 |
-
score_thr=score_threshold,
|
| 116 |
-
bbox_color=None,
|
| 117 |
-
text_color=(200, 200, 200),
|
| 118 |
-
mask_color=None)
|
| 119 |
-
return vis[:, :, ::-1] # BGR -> RGB
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
class PoseModel:
|
| 123 |
-
def __init__(self, device: str | torch.device):
|
| 124 |
-
self.device = torch.device(device)
|
| 125 |
-
self.models = self._load_models()
|
| 126 |
-
self.model_name = 'ViTPose-B (multi-task train, COCO)'
|
| 127 |
-
|
| 128 |
-
def _load_models(self) -> dict[str, nn.Module]:
|
| 129 |
-
model_dict = {
|
| 130 |
-
'ViTPose-B (single-task train)': {
|
| 131 |
-
'config':
|
| 132 |
-
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_base_coco_256x192.py',
|
| 133 |
-
'model': 'models/vitpose-b.pth',
|
| 134 |
-
},
|
| 135 |
-
'ViTPose-L (single-task train)': {
|
| 136 |
-
'config':
|
| 137 |
-
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_large_coco_256x192.py',
|
| 138 |
-
'model': 'models/vitpose-l.pth',
|
| 139 |
-
},
|
| 140 |
-
'ViTPose-B (multi-task train, COCO)': {
|
| 141 |
-
'config':
|
| 142 |
-
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_base_coco_256x192.py',
|
| 143 |
-
'model': 'models/vitpose-b-multi-coco.pth',
|
| 144 |
-
},
|
| 145 |
-
'ViTPose-L (multi-task train, COCO)': {
|
| 146 |
-
'config':
|
| 147 |
-
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_large_coco_256x192.py',
|
| 148 |
-
'model': 'models/vitpose-l-multi-coco.pth',
|
| 149 |
-
},
|
| 150 |
-
}
|
| 151 |
-
models = dict()
|
| 152 |
-
for key, dic in model_dict.items():
|
| 153 |
-
ckpt_path = huggingface_hub.hf_hub_download('hysts/ViTPose',
|
| 154 |
-
dic['model'],
|
| 155 |
-
use_auth_token=TOKEN)
|
| 156 |
-
model = init_pose_model(dic['config'],
|
| 157 |
-
ckpt_path,
|
| 158 |
-
device=self.device)
|
| 159 |
-
models[key] = model
|
| 160 |
-
return models
|
| 161 |
-
|
| 162 |
-
def set_model_name(self, name: str) -> None:
|
| 163 |
-
self.model_name = name
|
| 164 |
-
|
| 165 |
-
def predict_pose_and_visualize(
|
| 166 |
-
self,
|
| 167 |
-
image: np.ndarray,
|
| 168 |
-
det_results: list[np.ndarray],
|
| 169 |
-
box_score_threshold: float,
|
| 170 |
-
kpt_score_threshold: float,
|
| 171 |
-
vis_dot_radius: int,
|
| 172 |
-
vis_line_thickness: int,
|
| 173 |
-
) -> tuple[list[dict[str, np.ndarray]], np.ndarray]:
|
| 174 |
-
out = self.predict_pose(image, det_results, box_score_threshold)
|
| 175 |
-
vis = self.visualize_pose_results(image, out, kpt_score_threshold,
|
| 176 |
-
vis_dot_radius, vis_line_thickness)
|
| 177 |
-
return out, vis
|
| 178 |
-
|
| 179 |
-
def predict_pose(
|
| 180 |
-
self,
|
| 181 |
-
image: np.ndarray,
|
| 182 |
-
det_results: list[np.ndarray],
|
| 183 |
-
box_score_threshold: float = 0.5) -> list[dict[str, np.ndarray]]:
|
| 184 |
-
image = image[:, :, ::-1] # RGB -> BGR
|
| 185 |
-
model = self.models[self.model_name]
|
| 186 |
-
person_results = process_mmdet_results(det_results, 1)
|
| 187 |
-
out, _ = inference_top_down_pose_model(model,
|
| 188 |
-
image,
|
| 189 |
-
person_results=person_results,
|
| 190 |
-
bbox_thr=box_score_threshold,
|
| 191 |
-
format='xyxy')
|
| 192 |
-
return out
|
| 193 |
-
|
| 194 |
-
def visualize_pose_results(self,
|
| 195 |
-
image: np.ndarray,
|
| 196 |
-
pose_results: list[np.ndarray],
|
| 197 |
-
kpt_score_threshold: float = 0.3,
|
| 198 |
-
vis_dot_radius: int = 4,
|
| 199 |
-
vis_line_thickness: int = 1) -> np.ndarray:
|
| 200 |
-
image = image[:, :, ::-1] # RGB -> BGR
|
| 201 |
-
model = self.models[self.model_name]
|
| 202 |
-
vis = vis_pose_result(model,
|
| 203 |
-
image,
|
| 204 |
-
pose_results,
|
| 205 |
-
kpt_score_thr=kpt_score_threshold,
|
| 206 |
-
radius=vis_dot_radius,
|
| 207 |
-
thickness=vis_line_thickness)
|
| 208 |
-
return vis[:, :, ::-1] # BGR -> RGB
|
| 209 |
-
|
| 210 |
-
|
| 211 |
def set_example_image(example: list) -> dict:
|
| 212 |
return gr.Image.update(value=example[0])
|
| 213 |
|
|
@@ -227,17 +47,8 @@ def main():
|
|
| 227 |
det_model = DetModel(device=args.device)
|
| 228 |
pose_model = PoseModel(device=args.device)
|
| 229 |
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
text-align: center;
|
| 233 |
-
}
|
| 234 |
-
'''
|
| 235 |
-
|
| 236 |
-
with gr.Blocks(theme=args.theme, css=css) as demo:
|
| 237 |
-
gr.Markdown('''<h1 id="title">ViTPose</h1>
|
| 238 |
-
|
| 239 |
-
This is an unofficial demo for [https://github.com/ViTAE-Transformer/ViTPose](https://github.com/ViTAE-Transformer/ViTPose).'''
|
| 240 |
-
)
|
| 241 |
|
| 242 |
with gr.Box():
|
| 243 |
gr.Markdown('## Step 1')
|
|
@@ -318,14 +129,10 @@ This is an unofficial demo for [https://github.com/ViTAE-Transformer/ViTPose](ht
|
|
| 318 |
with gr.Row():
|
| 319 |
redraw_pose_button = gr.Button(value='Redraw')
|
| 320 |
|
| 321 |
-
gr.Markdown(
|
| 322 |
-
'<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.vitpose" alt="visitor badge"/></center>'
|
| 323 |
-
)
|
| 324 |
|
| 325 |
detector_name.change(fn=det_model.set_model_name,
|
| 326 |
-
inputs=
|
| 327 |
-
detector_name,
|
| 328 |
-
],
|
| 329 |
outputs=None)
|
| 330 |
detect_button.click(fn=det_model.detect_and_visualize,
|
| 331 |
inputs=[
|
|
@@ -342,14 +149,10 @@ This is an unofficial demo for [https://github.com/ViTAE-Transformer/ViTPose](ht
|
|
| 342 |
det_preds,
|
| 343 |
vis_det_score_threshold,
|
| 344 |
],
|
| 345 |
-
outputs=
|
| 346 |
-
detection_visualization,
|
| 347 |
-
])
|
| 348 |
|
| 349 |
pose_model_name.change(fn=pose_model.set_model_name,
|
| 350 |
-
inputs=
|
| 351 |
-
pose_model_name,
|
| 352 |
-
],
|
| 353 |
outputs=None)
|
| 354 |
predict_button.click(fn=pose_model.predict_pose_and_visualize,
|
| 355 |
inputs=[
|
|
@@ -372,17 +175,13 @@ This is an unofficial demo for [https://github.com/ViTAE-Transformer/ViTPose](ht
|
|
| 372 |
vis_dot_radius,
|
| 373 |
vis_line_thickness,
|
| 374 |
],
|
| 375 |
-
outputs=
|
| 376 |
-
pose_visualization,
|
| 377 |
-
])
|
| 378 |
|
| 379 |
-
example_images.click(
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
input_image,
|
| 385 |
-
])
|
| 386 |
|
| 387 |
demo.launch(
|
| 388 |
enable_queue=args.enable_queue,
|
|
|
|
| 3 |
from __future__ import annotations
|
| 4 |
|
| 5 |
import argparse
|
|
|
|
| 6 |
import pathlib
|
|
|
|
|
|
|
| 7 |
import tarfile
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
from model import DetModel, PoseModel
|
| 12 |
|
| 13 |
+
DESCRIPTION = '''# ViTPose
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
This is an unofficial demo for [https://github.com/ViTAE-Transformer/ViTPose](https://github.com/ViTAE-Transformer/ViTPose).'''
|
| 16 |
+
FOOTER = '<img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.glitch.me/badge?page_id=hysts.vitpose" />'
|
| 17 |
|
| 18 |
|
| 19 |
def parse_args() -> argparse.Namespace:
|
|
|
|
| 28 |
return parser.parse_args()
|
| 29 |
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
def set_example_image(example: list) -> dict:
|
| 32 |
return gr.Image.update(value=example[0])
|
| 33 |
|
|
|
|
| 47 |
det_model = DetModel(device=args.device)
|
| 48 |
pose_model = PoseModel(device=args.device)
|
| 49 |
|
| 50 |
+
with gr.Blocks(theme=args.theme, css='style.css') as demo:
|
| 51 |
+
gr.Markdown(DESCRIPTION)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
with gr.Box():
|
| 54 |
gr.Markdown('## Step 1')
|
|
|
|
| 129 |
with gr.Row():
|
| 130 |
redraw_pose_button = gr.Button(value='Redraw')
|
| 131 |
|
| 132 |
+
gr.Markdown(FOOTER)
|
|
|
|
|
|
|
| 133 |
|
| 134 |
detector_name.change(fn=det_model.set_model_name,
|
| 135 |
+
inputs=detector_name,
|
|
|
|
|
|
|
| 136 |
outputs=None)
|
| 137 |
detect_button.click(fn=det_model.detect_and_visualize,
|
| 138 |
inputs=[
|
|
|
|
| 149 |
det_preds,
|
| 150 |
vis_det_score_threshold,
|
| 151 |
],
|
| 152 |
+
outputs=detection_visualization)
|
|
|
|
|
|
|
| 153 |
|
| 154 |
pose_model_name.change(fn=pose_model.set_model_name,
|
| 155 |
+
inputs=pose_model_name,
|
|
|
|
|
|
|
| 156 |
outputs=None)
|
| 157 |
predict_button.click(fn=pose_model.predict_pose_and_visualize,
|
| 158 |
inputs=[
|
|
|
|
| 175 |
vis_dot_radius,
|
| 176 |
vis_line_thickness,
|
| 177 |
],
|
| 178 |
+
outputs=pose_visualization)
|
|
|
|
|
|
|
| 179 |
|
| 180 |
+
example_images.click(
|
| 181 |
+
fn=set_example_image,
|
| 182 |
+
inputs=example_images,
|
| 183 |
+
outputs=input_image,
|
| 184 |
+
)
|
|
|
|
|
|
|
| 185 |
|
| 186 |
demo.launch(
|
| 187 |
enable_queue=args.enable_queue,
|
model.py
ADDED
|
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import subprocess
|
| 5 |
+
import sys
|
| 6 |
+
|
| 7 |
+
if os.getenv('SYSTEM') == 'spaces':
|
| 8 |
+
import mim
|
| 9 |
+
|
| 10 |
+
mim.uninstall('mmcv-full', confirm_yes=True)
|
| 11 |
+
mim.install('mmcv-full==1.5.0', is_yes=True)
|
| 12 |
+
|
| 13 |
+
subprocess.call('pip uninstall -y opencv-python'.split())
|
| 14 |
+
subprocess.call('pip uninstall -y opencv-python-headless'.split())
|
| 15 |
+
subprocess.call('pip install opencv-python-headless==4.5.5.64'.split())
|
| 16 |
+
|
| 17 |
+
import huggingface_hub
|
| 18 |
+
import numpy as np
|
| 19 |
+
import torch
|
| 20 |
+
import torch.nn as nn
|
| 21 |
+
|
| 22 |
+
sys.path.insert(0, 'ViTPose/')
|
| 23 |
+
|
| 24 |
+
from mmdet.apis import inference_detector, init_detector
|
| 25 |
+
from mmpose.apis import (inference_top_down_pose_model, init_pose_model,
|
| 26 |
+
process_mmdet_results, vis_pose_result)
|
| 27 |
+
|
| 28 |
+
HF_TOKEN = os.environ['HF_TOKEN']
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class DetModel:
|
| 32 |
+
def __init__(self, device: str | torch.device):
|
| 33 |
+
self.device = torch.device(device)
|
| 34 |
+
self.models = self._load_models()
|
| 35 |
+
self.model_name = 'YOLOX-l'
|
| 36 |
+
|
| 37 |
+
def _load_models(self) -> dict[str, nn.Module]:
|
| 38 |
+
model_dict = {
|
| 39 |
+
'YOLOX-tiny': {
|
| 40 |
+
'config':
|
| 41 |
+
'mmdet_configs/configs/yolox/yolox_tiny_8x8_300e_coco.py',
|
| 42 |
+
'model':
|
| 43 |
+
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_tiny_8x8_300e_coco/yolox_tiny_8x8_300e_coco_20211124_171234-b4047906.pth',
|
| 44 |
+
},
|
| 45 |
+
'YOLOX-s': {
|
| 46 |
+
'config':
|
| 47 |
+
'mmdet_configs/configs/yolox/yolox_s_8x8_300e_coco.py',
|
| 48 |
+
'model':
|
| 49 |
+
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_s_8x8_300e_coco/yolox_s_8x8_300e_coco_20211121_095711-4592a793.pth',
|
| 50 |
+
},
|
| 51 |
+
'YOLOX-l': {
|
| 52 |
+
'config':
|
| 53 |
+
'mmdet_configs/configs/yolox/yolox_l_8x8_300e_coco.py',
|
| 54 |
+
'model':
|
| 55 |
+
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth',
|
| 56 |
+
},
|
| 57 |
+
'YOLOX-x': {
|
| 58 |
+
'config':
|
| 59 |
+
'mmdet_configs/configs/yolox/yolox_x_8x8_300e_coco.py',
|
| 60 |
+
'model':
|
| 61 |
+
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_x_8x8_300e_coco/yolox_x_8x8_300e_coco_20211126_140254-1ef88d67.pth',
|
| 62 |
+
},
|
| 63 |
+
}
|
| 64 |
+
models = {
|
| 65 |
+
key: init_detector(dic['config'], dic['model'], device=self.device)
|
| 66 |
+
for key, dic in model_dict.items()
|
| 67 |
+
}
|
| 68 |
+
return models
|
| 69 |
+
|
| 70 |
+
def set_model_name(self, name: str) -> None:
|
| 71 |
+
self.model_name = name
|
| 72 |
+
|
| 73 |
+
def detect_and_visualize(
|
| 74 |
+
self, image: np.ndarray,
|
| 75 |
+
score_threshold: float) -> tuple[list[np.ndarray], np.ndarray]:
|
| 76 |
+
out = self.detect(image)
|
| 77 |
+
vis = self.visualize_detection_results(image, out, score_threshold)
|
| 78 |
+
return out, vis
|
| 79 |
+
|
| 80 |
+
def detect(self, image: np.ndarray) -> list[np.ndarray]:
|
| 81 |
+
image = image[:, :, ::-1] # RGB -> BGR
|
| 82 |
+
model = self.models[self.model_name]
|
| 83 |
+
out = inference_detector(model, image)
|
| 84 |
+
return out
|
| 85 |
+
|
| 86 |
+
def visualize_detection_results(
|
| 87 |
+
self,
|
| 88 |
+
image: np.ndarray,
|
| 89 |
+
detection_results: list[np.ndarray],
|
| 90 |
+
score_threshold: float = 0.3) -> np.ndarray:
|
| 91 |
+
person_det = [detection_results[0]] + [np.array([]).reshape(0, 5)]
|
| 92 |
+
|
| 93 |
+
image = image[:, :, ::-1] # RGB -> BGR
|
| 94 |
+
model = self.models[self.model_name]
|
| 95 |
+
vis = model.show_result(image,
|
| 96 |
+
person_det,
|
| 97 |
+
score_thr=score_threshold,
|
| 98 |
+
bbox_color=None,
|
| 99 |
+
text_color=(200, 200, 200),
|
| 100 |
+
mask_color=None)
|
| 101 |
+
return vis[:, :, ::-1] # BGR -> RGB
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class PoseModel:
|
| 105 |
+
def __init__(self, device: str | torch.device):
|
| 106 |
+
self.device = torch.device(device)
|
| 107 |
+
self.models = self._load_models()
|
| 108 |
+
self.model_name = 'ViTPose-B (multi-task train, COCO)'
|
| 109 |
+
|
| 110 |
+
def _load_models(self) -> dict[str, nn.Module]:
|
| 111 |
+
model_dict = {
|
| 112 |
+
'ViTPose-B (single-task train)': {
|
| 113 |
+
'config':
|
| 114 |
+
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_base_coco_256x192.py',
|
| 115 |
+
'model': 'models/vitpose-b.pth',
|
| 116 |
+
},
|
| 117 |
+
'ViTPose-L (single-task train)': {
|
| 118 |
+
'config':
|
| 119 |
+
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_large_coco_256x192.py',
|
| 120 |
+
'model': 'models/vitpose-l.pth',
|
| 121 |
+
},
|
| 122 |
+
'ViTPose-B (multi-task train, COCO)': {
|
| 123 |
+
'config':
|
| 124 |
+
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_base_coco_256x192.py',
|
| 125 |
+
'model': 'models/vitpose-b-multi-coco.pth',
|
| 126 |
+
},
|
| 127 |
+
'ViTPose-L (multi-task train, COCO)': {
|
| 128 |
+
'config':
|
| 129 |
+
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_large_coco_256x192.py',
|
| 130 |
+
'model': 'models/vitpose-l-multi-coco.pth',
|
| 131 |
+
},
|
| 132 |
+
}
|
| 133 |
+
models = dict()
|
| 134 |
+
for key, dic in model_dict.items():
|
| 135 |
+
ckpt_path = huggingface_hub.hf_hub_download(
|
| 136 |
+
'hysts/ViTPose', dic['model'], use_auth_token=HF_TOKEN)
|
| 137 |
+
model = init_pose_model(dic['config'],
|
| 138 |
+
ckpt_path,
|
| 139 |
+
device=self.device)
|
| 140 |
+
models[key] = model
|
| 141 |
+
return models
|
| 142 |
+
|
| 143 |
+
def set_model_name(self, name: str) -> None:
|
| 144 |
+
self.model_name = name
|
| 145 |
+
|
| 146 |
+
def predict_pose_and_visualize(
|
| 147 |
+
self,
|
| 148 |
+
image: np.ndarray,
|
| 149 |
+
det_results: list[np.ndarray],
|
| 150 |
+
box_score_threshold: float,
|
| 151 |
+
kpt_score_threshold: float,
|
| 152 |
+
vis_dot_radius: int,
|
| 153 |
+
vis_line_thickness: int,
|
| 154 |
+
) -> tuple[list[dict[str, np.ndarray]], np.ndarray]:
|
| 155 |
+
out = self.predict_pose(image, det_results, box_score_threshold)
|
| 156 |
+
vis = self.visualize_pose_results(image, out, kpt_score_threshold,
|
| 157 |
+
vis_dot_radius, vis_line_thickness)
|
| 158 |
+
return out, vis
|
| 159 |
+
|
| 160 |
+
def predict_pose(
|
| 161 |
+
self,
|
| 162 |
+
image: np.ndarray,
|
| 163 |
+
det_results: list[np.ndarray],
|
| 164 |
+
box_score_threshold: float = 0.5) -> list[dict[str, np.ndarray]]:
|
| 165 |
+
image = image[:, :, ::-1] # RGB -> BGR
|
| 166 |
+
model = self.models[self.model_name]
|
| 167 |
+
person_results = process_mmdet_results(det_results, 1)
|
| 168 |
+
out, _ = inference_top_down_pose_model(model,
|
| 169 |
+
image,
|
| 170 |
+
person_results=person_results,
|
| 171 |
+
bbox_thr=box_score_threshold,
|
| 172 |
+
format='xyxy')
|
| 173 |
+
return out
|
| 174 |
+
|
| 175 |
+
def visualize_pose_results(self,
|
| 176 |
+
image: np.ndarray,
|
| 177 |
+
pose_results: list[np.ndarray],
|
| 178 |
+
kpt_score_threshold: float = 0.3,
|
| 179 |
+
vis_dot_radius: int = 4,
|
| 180 |
+
vis_line_thickness: int = 1) -> np.ndarray:
|
| 181 |
+
image = image[:, :, ::-1] # RGB -> BGR
|
| 182 |
+
model = self.models[self.model_name]
|
| 183 |
+
vis = vis_pose_result(model,
|
| 184 |
+
image,
|
| 185 |
+
pose_results,
|
| 186 |
+
kpt_score_thr=kpt_score_threshold,
|
| 187 |
+
radius=vis_dot_radius,
|
| 188 |
+
thickness=vis_line_thickness)
|
| 189 |
+
return vis[:, :, ::-1] # BGR -> RGB
|
style.css
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
h1 {
|
| 2 |
+
text-align: center;
|
| 3 |
+
}
|
| 4 |
+
div#result {
|
| 5 |
+
max-width: 600px;
|
| 6 |
+
max-height: 600px;
|
| 7 |
+
}
|
| 8 |
+
img#visitor-badge {
|
| 9 |
+
display: block;
|
| 10 |
+
margin: auto;
|
| 11 |
+
}
|