Spaces:
Runtime error
Runtime error
Commit
·
53f1c15
1
Parent(s):
e351b90
v04 update
Browse files- .gitignore +7 -1
- app.py +37 -19
- packages.txt +3 -0
.gitignore
CHANGED
|
@@ -13,8 +13,12 @@
|
|
| 13 |
|
| 14 |
# 日志格式
|
| 15 |
*.log
|
| 16 |
-
*.
|
| 17 |
*.txt
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
*.csv
|
| 19 |
|
| 20 |
# 参数文件
|
|
@@ -32,6 +36,7 @@
|
|
| 32 |
*.ttf
|
| 33 |
*.otf
|
| 34 |
|
|
|
|
| 35 |
*.pt
|
| 36 |
*.db
|
| 37 |
|
|
@@ -41,5 +46,6 @@
|
|
| 41 |
!cls_name/*
|
| 42 |
!model_config/*
|
| 43 |
!img_example/*
|
|
|
|
| 44 |
|
| 45 |
app copy.py
|
|
|
|
| 13 |
|
| 14 |
# 日志格式
|
| 15 |
*.log
|
| 16 |
+
*.datas
|
| 17 |
*.txt
|
| 18 |
+
|
| 19 |
+
# 生成文件
|
| 20 |
+
*.pdf
|
| 21 |
+
*.xlsx
|
| 22 |
*.csv
|
| 23 |
|
| 24 |
# 参数文件
|
|
|
|
| 36 |
*.ttf
|
| 37 |
*.otf
|
| 38 |
|
| 39 |
+
# 模型文件
|
| 40 |
*.pt
|
| 41 |
*.db
|
| 42 |
|
|
|
|
| 46 |
!cls_name/*
|
| 47 |
!model_config/*
|
| 48 |
!img_example/*
|
| 49 |
+
!packages.txt
|
| 50 |
|
| 51 |
app copy.py
|
app.py
CHANGED
|
@@ -133,16 +133,20 @@ def yaml_csv(file_path, file_tag):
|
|
| 133 |
|
| 134 |
|
| 135 |
# model loading
|
| 136 |
-
def model_loading(model_name, device, opt=[
|
| 137 |
-
|
| 138 |
-
#
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
return model
|
| 148 |
|
|
@@ -174,13 +178,13 @@ def pil_draw(img, countdown_msg, textFont, xyxy, font_size, opt, obj_cls_index,
|
|
| 174 |
|
| 175 |
if "label" in opt:
|
| 176 |
text_w, text_h = textFont.getsize(countdown_msg) # Label size
|
| 177 |
-
|
| 178 |
img_pil.rectangle(
|
| 179 |
(xyxy[0], xyxy[1], xyxy[0] + text_w, xyxy[1] + text_h),
|
| 180 |
fill=color_list[obj_cls_index],
|
| 181 |
outline=color_list[obj_cls_index],
|
| 182 |
) # label background
|
| 183 |
-
|
| 184 |
img_pil.multiline_text(
|
| 185 |
(xyxy[0], xyxy[1]),
|
| 186 |
countdown_msg,
|
|
@@ -199,7 +203,7 @@ def color_set(cls_num):
|
|
| 199 |
color = tuple(np.random.choice(range(256), size=3))
|
| 200 |
# color = ["#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)])]
|
| 201 |
color_list.append(color)
|
| 202 |
-
|
| 203 |
return color_list
|
| 204 |
|
| 205 |
|
|
@@ -218,9 +222,15 @@ def yolo_det_img(img, device, model_name, infer_size, conf, iou, max_num, model_
|
|
| 218 |
if model_name_tmp != model_name:
|
| 219 |
# Model judgment to avoid repeated loading
|
| 220 |
model_name_tmp = model_name
|
|
|
|
| 221 |
model = model_loading(model_name_tmp, device, opt)
|
| 222 |
elif device_tmp != device:
|
|
|
|
| 223 |
device_tmp = device
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
model = model_loading(model_name_tmp, device, opt)
|
| 225 |
|
| 226 |
# -------------Model tuning -------------
|
|
@@ -229,12 +239,12 @@ def yolo_det_img(img, device, model_name, infer_size, conf, iou, max_num, model_
|
|
| 229 |
model.max_det = int(max_num) # Maximum number of detection frames
|
| 230 |
model.classes = model_cls # model classes
|
| 231 |
|
| 232 |
-
color_list = color_set(len(model_cls_name_cp))
|
| 233 |
|
| 234 |
img_size = img.size # frame size
|
| 235 |
|
| 236 |
results = model(img, size=infer_size) # detection
|
| 237 |
-
|
| 238 |
# ----------------目标裁剪----------------
|
| 239 |
crops = results.crop(save=False)
|
| 240 |
img_crops = []
|
|
@@ -243,7 +253,7 @@ def yolo_det_img(img, device, model_name, infer_size, conf, iou, max_num, model_
|
|
| 243 |
|
| 244 |
# Data Frame
|
| 245 |
dataframe = results.pandas().xyxy[0].round(2)
|
| 246 |
-
|
| 247 |
det_csv = "./Det_Report.csv"
|
| 248 |
det_excel = "./Det_Report.xlsx"
|
| 249 |
|
|
@@ -251,7 +261,7 @@ def yolo_det_img(img, device, model_name, infer_size, conf, iou, max_num, model_
|
|
| 251 |
dataframe.to_csv(det_csv, index=False)
|
| 252 |
else:
|
| 253 |
det_csv = None
|
| 254 |
-
|
| 255 |
if "excel" in opt:
|
| 256 |
dataframe.to_excel(det_excel, sheet_name='sheet1', index=False)
|
| 257 |
else:
|
|
@@ -363,9 +373,15 @@ def yolo_det_video(video, device, model_name, infer_size, conf, iou, max_num, mo
|
|
| 363 |
if model_name_tmp != model_name:
|
| 364 |
# Model judgment to avoid repeated loading
|
| 365 |
model_name_tmp = model_name
|
|
|
|
| 366 |
model = model_loading(model_name_tmp, device, opt)
|
| 367 |
elif device_tmp != device:
|
|
|
|
| 368 |
device_tmp = device
|
|
|
|
|
|
|
|
|
|
|
|
|
| 369 |
model = model_loading(model_name_tmp, device, opt)
|
| 370 |
|
| 371 |
# -------------Model tuning -------------
|
|
@@ -374,7 +390,7 @@ def yolo_det_video(video, device, model_name, infer_size, conf, iou, max_num, mo
|
|
| 374 |
model.max_det = int(max_num) # Maximum number of detection frames
|
| 375 |
model.classes = model_cls # model classes
|
| 376 |
|
| 377 |
-
color_list = color_set(len(model_cls_name_cp))
|
| 378 |
|
| 379 |
# ----------------Load fonts----------------
|
| 380 |
yaml_index = cls_name.index(".yaml")
|
|
@@ -551,7 +567,9 @@ def main(args):
|
|
| 551 |
outputs_video = gr.Video(format='mp4', label="Detection video")
|
| 552 |
|
| 553 |
# output parameters
|
| 554 |
-
outputs_img_list = [
|
|
|
|
|
|
|
| 555 |
outputs_video_list = [outputs_video]
|
| 556 |
|
| 557 |
# title
|
|
|
|
| 133 |
|
| 134 |
|
| 135 |
# model loading
|
| 136 |
+
def model_loading(model_name, device, opt=[]):
|
| 137 |
+
|
| 138 |
+
# 加载本地模型
|
| 139 |
+
try:
|
| 140 |
+
# load model
|
| 141 |
+
model = torch.hub.load(model_path,
|
| 142 |
+
model_name,
|
| 143 |
+
force_reload=[True if "refresh_yolov5" in opt else False][0],
|
| 144 |
+
device=device,
|
| 145 |
+
_verbose=False)
|
| 146 |
+
except Exception as e:
|
| 147 |
+
print(e)
|
| 148 |
+
else:
|
| 149 |
+
print(f"🚀 welcome to {GYD_VERSION},{model_name} loaded successfully!")
|
| 150 |
|
| 151 |
return model
|
| 152 |
|
|
|
|
| 178 |
|
| 179 |
if "label" in opt:
|
| 180 |
text_w, text_h = textFont.getsize(countdown_msg) # Label size
|
| 181 |
+
|
| 182 |
img_pil.rectangle(
|
| 183 |
(xyxy[0], xyxy[1], xyxy[0] + text_w, xyxy[1] + text_h),
|
| 184 |
fill=color_list[obj_cls_index],
|
| 185 |
outline=color_list[obj_cls_index],
|
| 186 |
) # label background
|
| 187 |
+
|
| 188 |
img_pil.multiline_text(
|
| 189 |
(xyxy[0], xyxy[1]),
|
| 190 |
countdown_msg,
|
|
|
|
| 203 |
color = tuple(np.random.choice(range(256), size=3))
|
| 204 |
# color = ["#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)])]
|
| 205 |
color_list.append(color)
|
| 206 |
+
|
| 207 |
return color_list
|
| 208 |
|
| 209 |
|
|
|
|
| 222 |
if model_name_tmp != model_name:
|
| 223 |
# Model judgment to avoid repeated loading
|
| 224 |
model_name_tmp = model_name
|
| 225 |
+
print(f"Loading model {model_name_tmp}......")
|
| 226 |
model = model_loading(model_name_tmp, device, opt)
|
| 227 |
elif device_tmp != device:
|
| 228 |
+
# Device judgment to avoid repeated loading
|
| 229 |
device_tmp = device
|
| 230 |
+
print(f"Loading model {model_name_tmp}......")
|
| 231 |
+
model = model_loading(model_name_tmp, device, opt)
|
| 232 |
+
else:
|
| 233 |
+
print(f"Loading model {model_name_tmp}......")
|
| 234 |
model = model_loading(model_name_tmp, device, opt)
|
| 235 |
|
| 236 |
# -------------Model tuning -------------
|
|
|
|
| 239 |
model.max_det = int(max_num) # Maximum number of detection frames
|
| 240 |
model.classes = model_cls # model classes
|
| 241 |
|
| 242 |
+
color_list = color_set(len(model_cls_name_cp)) # 设置颜色
|
| 243 |
|
| 244 |
img_size = img.size # frame size
|
| 245 |
|
| 246 |
results = model(img, size=infer_size) # detection
|
| 247 |
+
|
| 248 |
# ----------------目标裁剪----------------
|
| 249 |
crops = results.crop(save=False)
|
| 250 |
img_crops = []
|
|
|
|
| 253 |
|
| 254 |
# Data Frame
|
| 255 |
dataframe = results.pandas().xyxy[0].round(2)
|
| 256 |
+
|
| 257 |
det_csv = "./Det_Report.csv"
|
| 258 |
det_excel = "./Det_Report.xlsx"
|
| 259 |
|
|
|
|
| 261 |
dataframe.to_csv(det_csv, index=False)
|
| 262 |
else:
|
| 263 |
det_csv = None
|
| 264 |
+
|
| 265 |
if "excel" in opt:
|
| 266 |
dataframe.to_excel(det_excel, sheet_name='sheet1', index=False)
|
| 267 |
else:
|
|
|
|
| 373 |
if model_name_tmp != model_name:
|
| 374 |
# Model judgment to avoid repeated loading
|
| 375 |
model_name_tmp = model_name
|
| 376 |
+
print(f"Loading model {model_name_tmp}......")
|
| 377 |
model = model_loading(model_name_tmp, device, opt)
|
| 378 |
elif device_tmp != device:
|
| 379 |
+
# Device judgment to avoid repeated loading
|
| 380 |
device_tmp = device
|
| 381 |
+
print(f"Loading model {model_name_tmp}......")
|
| 382 |
+
model = model_loading(model_name_tmp, device, opt)
|
| 383 |
+
else:
|
| 384 |
+
print(f"Loading model {model_name_tmp}......")
|
| 385 |
model = model_loading(model_name_tmp, device, opt)
|
| 386 |
|
| 387 |
# -------------Model tuning -------------
|
|
|
|
| 390 |
model.max_det = int(max_num) # Maximum number of detection frames
|
| 391 |
model.classes = model_cls # model classes
|
| 392 |
|
| 393 |
+
color_list = color_set(len(model_cls_name_cp)) # 设置颜色
|
| 394 |
|
| 395 |
# ----------------Load fonts----------------
|
| 396 |
yaml_index = cls_name.index(".yaml")
|
|
|
|
| 567 |
outputs_video = gr.Video(format='mp4', label="Detection video")
|
| 568 |
|
| 569 |
# output parameters
|
| 570 |
+
outputs_img_list = [
|
| 571 |
+
outputs_img, outputs_crops, outputs_objSize, outputs_clsSize, outputs_df, outputs_json, outputs_pdf,
|
| 572 |
+
outputs_csv, outputs_excel]
|
| 573 |
outputs_video_list = [outputs_video]
|
| 574 |
|
| 575 |
# title
|
packages.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
ffmpeg
|
| 2 |
+
x264
|
| 3 |
+
libx264-dev
|