Spaces:
Runtime error
Runtime error
File size: 7,204 Bytes
71cd91e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
import re
import string
SYMBOLS_MAPPING = {
"\n": "",
"\t": "",
"…": ",",
"“": "'",
"”": "'",
"‘": "'",
"’": "'",
"【": "",
"】": "",
"[": "",
"]": "",
"(": "",
")": "",
"(": "",
")": "",
"・": "",
"·": "",
"「": "'",
"」": "'",
"《": "'",
"》": "'",
"—": "",
"~": ",",
"~": ",",
":": ",",
";": ",",
";": ",",
":": ",",
'"': "",
"!": ",",
# "!": ".",
"————": "",
"——": "",
"—": "",
"……": ",",
"*": "",
}
REPLACE_SYMBOL_REGEX = re.compile(
"|".join(re.escape(p) for p in SYMBOLS_MAPPING.keys())
)
EMOJI_REGEX = re.compile(
"["
"\U0001f600-\U0001f64f" # emoticons
"\U0001f300-\U0001f5ff" # symbols & pictographs
"\U0001f680-\U0001f6ff" # transport & map symbols
"\U0001f1e0-\U0001f1ff" # flags (iOS)
"]+",
flags=re.UNICODE,
)
def clean_text(text):
# Clean the text
text = text.strip()
text = text.replace("\xa0", "")
# Replace all chinese symbols with their english counterparts
text = REPLACE_SYMBOL_REGEX.sub(lambda x: SYMBOLS_MAPPING[x.group()], text)
# Remove emojis
text = EMOJI_REGEX.sub(r"", text)
# Remove continuous periods (...) and commas (,,,)
text = re.sub(r"[.,]{2,}", lambda m: m.group()[0], text)
return text
def utf_8_len(text):
return len(text.encode("utf-8"))
def break_text(texts, length, splits: set):
for text in texts:
if utf_8_len(text) <= length:
yield text
continue
curr = ""
for char in text:
curr += char
if char in splits:
yield curr
curr = ""
if curr:
yield curr
def break_text_by_length(texts, length):
for text in texts:
if utf_8_len(text) <= length:
yield text
continue
curr = ""
for char in text:
curr += char
if utf_8_len(curr) >= length:
yield curr
curr = ""
if curr:
yield curr
def add_cleaned(curr, segments):
curr = curr.strip()
if curr and not all(c.isspace() or c in string.punctuation for c in curr):
segments.append(curr)
def protect_float(text):
# Turns 3.14 into <3_f_14> to prevent splitting
return re.sub(r"(\d+)\.(\d+)", r"<\1_f_\2>", text)
def unprotect_float(text):
# Turns <3_f_14> into 3.14
return re.sub(r"<(\d+)_f_(\d+)>", r"\1.\2", text)
def split_text(text, length):
text = clean_text(text)
# Break the text into pieces with following rules:
# 1. Split the text at ".", "!", "?" if text is NOT a float
# 2. If the text is longer than length, split at ","
# 3. If the text is still longer than length, split at " "
# 4. If the text is still longer than length, split at any character to length
texts = [text]
texts = map(protect_float, texts)
texts = break_text(texts, length, {".", "!", "?", "。", "!", "?"})
texts = map(unprotect_float, texts)
texts = break_text(texts, length, {",", ","})
texts = break_text(texts, length, {" "})
texts = list(break_text_by_length(texts, length))
# Then, merge the texts into segments with length <= length
segments = []
curr = ""
for text in texts:
if utf_8_len(curr) + utf_8_len(text) <= length:
curr += text
else:
add_cleaned(curr, segments)
curr = text
if curr:
add_cleaned(curr, segments)
return segments
def contains_chinese(text):
"""检测文本是否包含中文字符"""
return bool(re.search(r"[\u4e00-\u9fff]", text))
def count_words_english(text):
"""统计英文单词数量"""
return len(text.split())
def count_characters_chinese(text):
"""统计中文字符数量"""
return len(text)
def split_by_punctuation_english(text):
"""按英文标点符号分割"""
sentences = re.split(r"([.!?])", text)
result = []
for i in range(0, len(sentences) - 1, 2):
sentence = sentences[i].strip()
if sentence:
if i + 1 < len(sentences):
sentence += sentences[i + 1]
result.append(sentence)
if len(sentences) % 2 == 1 and sentences[-1].strip():
result.append(sentences[-1].strip())
return result
def split_by_punctuation_chinese(text):
"""按中文标点符号分割"""
sentences = re.split(r"([。!?])", text)
result = []
for i in range(0, len(sentences) - 1, 2):
sentence = sentences[i].strip()
if sentence:
if i + 1 < len(sentences):
sentence += sentences[i + 1]
result.append(sentence)
if len(sentences) % 2 == 1 and sentences[-1].strip():
result.append(sentences[-1].strip())
return result
def merge_sentences_english(sentences, max_words=80):
"""合并英文句子"""
result = []
current_chunk = ""
for sentence in sentences:
if not current_chunk:
current_chunk = sentence
else:
test_chunk = current_chunk + " " + sentence
if count_words_english(test_chunk) <= max_words:
current_chunk = test_chunk
else:
result.append(current_chunk)
current_chunk = sentence
if current_chunk:
result.append(current_chunk)
return result
def merge_sentences_chinese(sentences, max_chars=100):
"""合并中文句子"""
result = []
current_chunk = ""
for sentence in sentences:
if not current_chunk:
current_chunk = sentence
else:
test_chunk = current_chunk + sentence
if count_characters_chinese(test_chunk) <= max_chars:
current_chunk = test_chunk
else:
result.append(current_chunk)
current_chunk = sentence
if current_chunk:
result.append(current_chunk)
return result
def process_text(text):
chinese_max_limit = 150
english_max_limit = 80
# 移除开头的标记如[S2]
text = re.sub(r"^\[S\d+\]", "", text).strip()
is_chinese = contains_chinese(text)
if is_chinese:
if count_characters_chinese(text) <= chinese_max_limit:
return [text]
sentences = split_by_punctuation_chinese(text)
result = merge_sentences_chinese(sentences, chinese_max_limit)
else:
if count_words_english(text) <= english_max_limit:
return [text]
sentences = split_by_punctuation_english(text)
result = merge_sentences_english(sentences, english_max_limit)
return result
def process_text_list(text_list):
new_text_list = []
for text in text_list:
speaker = text[:4]
# print("---speaker:", speaker)
assert speaker in ["[S1]", "[S2]", "[S3]", "[S4]"]
result = process_text(text=text)
# print("---result:\n", result, len(result))
for chunk in result:
new_text_list.append(speaker + chunk)
return new_text_list
|