File size: 16,609 Bytes
71cd91e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
import os
import time
import json
import torch
import torchaudio

from typing import List, Tuple
from fireredtts2.codec import RedCodecInfer
from fireredtts2.llm import load_llm_model, load_custom_tokenizer
from fireredtts2.llm.utils import Segment
from fireredtts2.utils.spliter import clean_text, split_text, process_text_list
from tqdm import tqdm


class FireRedTTS2:
    def __init__(self, pretrained_dir, gen_type, device):

        assert os.path.exists(pretrained_dir)
        assert gen_type in ["monologue", "dialogue"]
        llm_config_path = os.path.join(pretrained_dir, "config_llm.json")
        if gen_type == "monologue":
            llm_ckpt_path = os.path.join(pretrained_dir, "llm_pretrain.pt")
            # llm_ckpt_path = os.path.join(pretrained_dir, "llm_posttrain.pt")
        else:
            llm_ckpt_path = os.path.join(pretrained_dir, "llm_posttrain.pt")
        codec_config_path = os.path.join(pretrained_dir, "config_codec.json")
        codec_ckpt_path = os.path.join(pretrained_dir, "codec.pt")
        pretrained_qwen_path = os.path.join(pretrained_dir, "Qwen2.5-1.5B")

        # check
        assert os.path.exists(llm_config_path)
        assert os.path.exists(llm_ckpt_path)
        assert os.path.exists(codec_config_path)
        assert os.path.exists(codec_ckpt_path)
        assert os.path.exists(pretrained_qwen_path)

        # ==== Load Torch LLM ====
        llm_config = json.load(open(llm_config_path))
        self._model = load_llm_model(
            configs=llm_config, checkpoint_path=llm_ckpt_path, device=device
        )
        self._model.eval()
        self._model.setup_caches(1)
        print("[INFO] LLM Loaded...")

        # ==== Load Qwen2.5 Text Tokenizer ====
        self._text_tokenizer = load_custom_tokenizer(pretrained_qwen_path)
        print("[INFO] Text Tokenizer Loaded...")

        # ==== Load Torch Audio Tokenizer ====
        torch_codec = RedCodecInfer.from_pretrained(codec_config_path, codec_ckpt_path)
        torch_codec.eval()
        self._audio_tokenizer = torch_codec.to(device)
        print("[INFO] Codec Loaded...")

        self.sample_rate = 16000
        self.device = device
        self.max_seq_len = 3100

    def load_prompt_audio(self, audio_path) -> torch.Tensor:
        audio, audio_sr = torchaudio.load(audio_path)
        # Audio must be single channel
        if audio.shape[0] > 1:
            audio = audio[0, :].unsqueeze(0)
        audio16k = torchaudio.functional.resample(audio, audio_sr, 16000)
        return audio16k

    def prepare_prompt(self, text, speaker, audio_path) -> Segment:
        audio_tensor = self.load_prompt_audio(audio_path)
        return Segment(text=text, speaker=speaker, audio=audio_tensor)

    def _tokenize_text_segment(
        self, text: str, speaker: str
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        frame_tokens = []
        frame_masks = []

        text = speaker + "<|text_start|>" + text + "<|text_end|>"
        text_tokens = self._text_tokenizer.encode(text)
        text_frame = torch.zeros(len(text_tokens), 17).long()
        text_frame_mask = torch.zeros(len(text_tokens), 17).bool()
        text_frame[:, -1] = torch.tensor(text_tokens)
        text_frame_mask[:, -1] = True

        frame_tokens.append(text_frame.to(self.device))
        frame_masks.append(text_frame_mask.to(self.device))

        return torch.cat(frame_tokens, dim=0), torch.cat(frame_masks, dim=0)

    def _tokenize_audio(self, audio: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        frame_tokens = []
        frame_masks = []

        # (K, T)
        audio_length = torch.tensor([audio.shape[1]], dtype=torch.long)
        audio_tokens, token_length = self._audio_tokenizer.encode(
            audio.to(self.device),
            audio_length.to(self.device),
            batch_size=48,
        )

        audio_tokens = audio_tokens.squeeze(0)
        # add EOS frame
        eos_frame = torch.zeros(audio_tokens.size(0), 1).to(self.device)
        audio_tokens = torch.cat([audio_tokens, eos_frame], dim=1)

        audio_frame = torch.zeros(audio_tokens.size(1), 17).long().to(self.device)
        audio_frame_mask = torch.zeros(audio_tokens.size(1), 17).bool().to(self.device)
        audio_frame[:, :-1] = audio_tokens.transpose(0, 1)
        audio_frame_mask[:, :-1] = True

        frame_tokens.append(audio_frame)
        frame_masks.append(audio_frame_mask)

        return torch.cat(frame_tokens, dim=0), torch.cat(frame_masks, dim=0)

    def _tokenize_segment(self, segment: Segment) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Returns:
            (seq_len,17), (seq_len, 17)
        """
        text_tokens, text_masks = self._tokenize_text_segment(
            segment.text, segment.speaker
        )
        audio_tokens, audio_masks = self._tokenize_audio(segment.audio)

        return torch.cat([text_tokens, audio_tokens], dim=0), torch.cat(
            [text_masks, audio_masks], dim=0
        )

    @torch.inference_mode()
    def generate(
        self,
        text: str,
        speaker: str,
        context: List[Segment],
        max_audio_length_ms: float = 90_000,
        temperature: float = 0.9,
        topk: int = 20,
    ) -> torch.Tensor:
        self._model.reset_caches()

        max_generation_len = int(max_audio_length_ms / 80)
        tokens, tokens_mask = [], []
        for segment in context:
            segment_tokens, segment_tokens_mask = self._tokenize_segment(segment)
            tokens.append(segment_tokens)
            tokens_mask.append(segment_tokens_mask)

        gen_segment_tokens, gen_segment_tokens_mask = self._tokenize_text_segment(
            text, speaker
        )
        tokens.append(gen_segment_tokens)
        tokens_mask.append(gen_segment_tokens_mask)

        prompt_tokens = torch.cat(tokens, dim=0).long().to(self.device)
        prompt_tokens_mask = torch.cat(tokens_mask, dim=0).bool().to(self.device)

        samples = []
        curr_tokens = prompt_tokens.unsqueeze(0)
        curr_tokens_mask = prompt_tokens_mask.unsqueeze(0)
        curr_pos = (
            torch.arange(0, prompt_tokens.size(0)).unsqueeze(0).long().to(self.device)
        )

        max_seq_len = 3100
        max_context_len = max_seq_len - max_generation_len
        if curr_tokens.size(1) >= max_context_len:
            raise ValueError(
                f"Inputs too long, must be below max_seq_len - max_generation_len: {max_context_len}"
            )

        for _ in range(max_generation_len):
            sample = self._model.generate_frame(
                curr_tokens, curr_tokens_mask, curr_pos, temperature, topk
            )
            # eos
            if torch.all(sample == 0):
                break

            samples.append(sample)

            curr_tokens = torch.cat(
                [sample, torch.zeros(1, 1).long().to(self.device)], dim=1
            ).unsqueeze(1)
            curr_tokens_mask = torch.cat(
                [
                    torch.ones_like(sample).bool(),
                    torch.zeros(1, 1).bool().to(self.device),
                ],
                dim=1,
            ).unsqueeze(1)
            curr_pos = curr_pos[:, -1:] + 1

        audio = (
            self._audio_tokenizer.decode(torch.stack(samples).permute(1, 2, 0))
            .squeeze(0)
            .squeeze(0)
        )

        return audio

    def generate_single(
        self, context: List[Segment], temperature: float = 0.9, topk: int = 20
    ):
        self._model.reset_caches()
        max_generation_len = 400
        tokens, tokens_mask = [], []
        for segment in context:
            segment_tokens, segment_tokens_mask = self._tokenize_segment(segment)
            tokens.append(segment_tokens)
            tokens_mask.append(segment_tokens_mask)

        prompt_tokens = torch.cat(tokens, dim=0).long().to(self.device)
        prompt_tokens_mask = torch.cat(tokens_mask, dim=0).bool().to(self.device)
        prompt_tokens = prompt_tokens[:-3, :]
        prompt_tokens_mask = prompt_tokens_mask[:-3, :]

        samples = []
        curr_tokens = prompt_tokens.unsqueeze(0)
        curr_tokens_mask = prompt_tokens_mask.unsqueeze(0)
        curr_pos = (
            torch.arange(0, prompt_tokens.size(0)).unsqueeze(0).long().to(self.device)
        )

        num_token = 0
        start_time = time.time()
        for _ in range(max_generation_len):
            sample = self._model.generate_frame(
                curr_tokens, curr_tokens_mask, curr_pos, temperature, topk
            )
            # eos
            if torch.all(sample == 0):
                break

            samples.append(sample)

            curr_tokens = torch.cat(
                [sample, torch.zeros(1, 1).long().to(self.device)], dim=1
            ).unsqueeze(1)
            curr_tokens_mask = torch.cat(
                [
                    torch.ones_like(sample).bool(),
                    torch.zeros(1, 1).bool().to(self.device),
                ],
                dim=1,
            ).unsqueeze(1)
            curr_pos = curr_pos[:, -1:] + 1
            num_token += 1
            if num_token == 2:
                end_time = time.time()
                duration = end_time - start_time
                print("---first pack duration:", duration)

        gen_tokens = torch.stack(samples).permute(1, 2, 0)

        return gen_tokens

    # @torch.inference_mode()
    # def generate_stream(
    #     self,
    #     text: str,
    #     speaker: str,
    #     context: List[Segment],
    #     max_audio_length_ms: float = 90_000,
    #     temperature: float = 0.9,
    #     topk: int = 50,
    # ):
    #     self._model.reset_caches()

    #     max_generation_len = int(max_audio_length_ms / 80)
    #     tokens, tokens_mask = [], []
    #     for segment in context:
    #         segment_tokens, segment_tokens_mask = self._tokenize_segment(segment)
    #         tokens.append(segment_tokens)
    #         tokens_mask.append(segment_tokens_mask)

    #     gen_segment_tokens, gen_segment_tokens_mask = self._tokenize_text_segment(
    #         text, speaker
    #     )
    #     tokens.append(gen_segment_tokens)
    #     tokens_mask.append(gen_segment_tokens_mask)

    #     prompt_tokens = torch.cat(tokens, dim=0).long().to(self.device)
    #     prompt_tokens_mask = torch.cat(tokens_mask, dim=0).bool().to(self.device)

    #     samples = []
    #     curr_tokens = prompt_tokens.unsqueeze(0)
    #     curr_tokens_mask = prompt_tokens_mask.unsqueeze(0)
    #     curr_pos = (
    #         torch.arange(0, prompt_tokens.size(0)).unsqueeze(0).long().to(self.device)
    #     )

    #     max_seq_len = 3100
    #     max_context_len = max_seq_len - max_generation_len
    #     if curr_tokens.size(1) >= max_context_len:
    #         raise ValueError(
    #             f"Inputs too long, must be below max_seq_len - max_generation_len: {max_context_len}"
    #         )

    #     # codec cache
    #     codec_cache = {}
    #     prev_sample = None

    #     for _ in range(max_generation_len):
    #         sample = self._model.generate_frame(
    #             curr_tokens, curr_tokens_mask, curr_pos, temperature, topk
    #         )
    #         # eos
    #         if torch.all(sample == 0):
    #             break

    #         # decode one token
    #         if prev_sample is None:
    #             prev_sample = sample  # sample: (b, nq)
    #         else:
    #             audio_chunk, codec_cache = self._audio_tokenizer.decode_one_token(
    #                 prev_sample.unsqueeze(-1),
    #                 codec_cache,
    #                 last_token=False,
    #             )
    #             yield audio_chunk.squeeze(0)
    #             prev_sample = sample
    #         samples.append(sample)  # sample: (b, nq)

    #         curr_tokens = torch.cat(
    #             [sample, torch.zeros(1, 1).long().to(self.device)], dim=1
    #         ).unsqueeze(1)
    #         curr_tokens_mask = torch.cat(
    #             [
    #                 torch.ones_like(sample).bool(),
    #                 torch.zeros(1, 1).bool().to(self.device),
    #             ],
    #             dim=1,
    #         ).unsqueeze(1)
    #         curr_pos = curr_pos[:, -1:] + 1

    #     audio_chunk, codec_cache = self._audio_tokenizer.decode_one_token(
    #         prev_sample.unsqueeze(-1),
    #         codec_cache,
    #         last_token=True,
    #     )
    #     yield audio_chunk.squeeze(0)

    @torch.inference_mode()
    def generate_dialogue(
        self,
        text_list,
        prompt_wav_list=None,
        prompt_text_list=None,
        temperature=0.9,
        topk=20,
    ):
        all_generated_segments = []
        all_storage_segments = []
        prompt_segments = []
        text_list = process_text_list(text_list=text_list)
        if prompt_wav_list is not None:
            assert len(prompt_wav_list) == len(prompt_text_list)
            # Prepare prompts
            for i in range(len(prompt_wav_list)):
                prompt_wav = prompt_wav_list[i]
                prompt_text = prompt_text_list[i]
                speaker = prompt_text[:4]
                assert speaker in ["[S1]", "[S2]", "[S3]", "[S4]"]
                prompt_segments.append(
                    self.prepare_prompt(
                        text=prompt_text, speaker=speaker, audio_path=prompt_wav
                    )
                )

        for text in tqdm(text_list):
            speaker = text[:4]
            text = text[4:]
            # print("---speaker:", speaker)
            # print("---text:", text)
            assert speaker in ["[S1]", "[S2]", "[S3]", "[S4]"]

            audio_tensor = self.generate(
                text=text,
                speaker=speaker,
                context=prompt_segments + all_generated_segments,
                max_audio_length_ms=30_000,
                temperature=temperature,
                topk=topk,
            )

            # 做上下文管理的时候需要将audio 转到16k
            audio_16k = torchaudio.functional.resample(
                audio_tensor.unsqueeze(0), 24000, 16000
            )
            all_generated_segments.append(
                Segment(text=text, speaker=speaker, audio=audio_16k)
            )

            all_storage_segments.append(
                Segment(text=text, speaker=speaker, audio=audio_tensor.unsqueeze(0))
            )

        # Concatenate all generations
        all_audio = torch.cat([seg.audio for seg in all_storage_segments], dim=1)
        all_audio = all_audio.cpu()
        return all_audio

    @torch.inference_mode()
    def generate_monologue(
        self, text, prompt_wav=None, prompt_text=None, temperature=0.75, topk=20
    ):
        # step1. construct context
        if prompt_wav is not None:
            assert os.path.exists(prompt_wav)
            assert prompt_text is not None

            all_generated_segments = []
            all_storage_segments = []
            prompt_segments = []
            prompt_text = clean_text(text=prompt_text)
            text = clean_text(text=text)
            text_list = split_text(text=text, length=400)

            audio_list = []
            for text in text_list:
                text = clean_text(text=text)
                input_text = prompt_text[:-1] + "," + text
                prompt_a = self.prepare_prompt(
                    text=input_text, speaker="[S1]", audio_path=prompt_wav
                )

                context = [prompt_a]

                while True:
                    gen_tokens = self.generate_single(
                        context=context, temperature=temperature, topk=topk
                    )
                    if gen_tokens.shape[2] > 18:
                        break
                    # else:
                    #     print("生成结果小于1s,重新跑")

                gen_tokens = gen_tokens[:, :, 2:]  # cut leading silence
                audio = self._audio_tokenizer.decode(gen_tokens).squeeze(0).squeeze(0)
                audio_list.append(audio.unsqueeze(0))

            all_audio = torch.cat(tensors=audio_list, dim=1)

            return all_audio

        else:
            # random speaker
            text = clean_text(text=text.strip())
            audio_tensor = self.generate(
                text=text,
                speaker="[S1]",
                context=[],
                max_audio_length_ms=30_000,
                temperature=temperature,
                topk=topk,
            )
            return audio_tensor.unsqueeze(0)