Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -10,11 +10,14 @@ DetectorFactory.seed = 0
|
|
| 10 |
# Set Hugging Face cache directory to a writable location
|
| 11 |
os.environ["HF_HOME"] = "/tmp/huggingface"
|
| 12 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
# Retrieve Hugging Face token from environment variable
|
| 16 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 17 |
-
|
| 18 |
if not HF_TOKEN:
|
| 19 |
raise RuntimeError("Hugging Face token is missing! Please set the HF_TOKEN environment variable.")
|
| 20 |
|
|
@@ -26,19 +29,29 @@ ENGLISH_MODEL_NAME = "siebert/sentiment-roberta-large-english"
|
|
| 26 |
|
| 27 |
# Load multilingual sentiment model
|
| 28 |
try:
|
| 29 |
-
multilingual_tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
multilingual_model = pipeline(
|
| 31 |
"sentiment-analysis",
|
| 32 |
model=MULTILINGUAL_MODEL_NAME,
|
| 33 |
tokenizer=multilingual_tokenizer,
|
| 34 |
-
|
|
|
|
| 35 |
)
|
| 36 |
except Exception as e:
|
| 37 |
raise RuntimeError(f"Failed to load multilingual model: {e}")
|
| 38 |
|
| 39 |
# Load English sentiment model
|
| 40 |
try:
|
| 41 |
-
english_model = pipeline(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
except Exception as e:
|
| 43 |
raise RuntimeError(f"Failed to load English sentiment model: {e}")
|
| 44 |
|
|
@@ -65,16 +78,14 @@ def home():
|
|
| 65 |
@app.post("/analyze/", response_model=SentimentResponse)
|
| 66 |
def analyze_sentiment(request: SentimentRequest):
|
| 67 |
text = request.text.strip()
|
| 68 |
-
|
| 69 |
if not text:
|
| 70 |
raise HTTPException(status_code=400, detail="Text input cannot be empty.")
|
| 71 |
-
|
| 72 |
language = detect_language(text)
|
| 73 |
-
|
| 74 |
# Choose the appropriate model based on detected language
|
| 75 |
model = english_model if language == "en" else multilingual_model
|
| 76 |
result = model(text)
|
| 77 |
-
|
| 78 |
return SentimentResponse(
|
| 79 |
original_text=text,
|
| 80 |
language_detected=language,
|
|
|
|
| 10 |
# Set Hugging Face cache directory to a writable location
|
| 11 |
os.environ["HF_HOME"] = "/tmp/huggingface"
|
| 12 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
|
| 13 |
+
|
| 14 |
+
# Create cache directory with proper permissions
|
| 15 |
+
cache_dir = os.environ["HF_HOME"]
|
| 16 |
+
os.makedirs(cache_dir, exist_ok=True)
|
| 17 |
+
os.chmod(cache_dir, 0o755) # Set read/write/execute permissions for owner
|
| 18 |
|
| 19 |
# Retrieve Hugging Face token from environment variable
|
| 20 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
| 21 |
if not HF_TOKEN:
|
| 22 |
raise RuntimeError("Hugging Face token is missing! Please set the HF_TOKEN environment variable.")
|
| 23 |
|
|
|
|
| 29 |
|
| 30 |
# Load multilingual sentiment model
|
| 31 |
try:
|
| 32 |
+
multilingual_tokenizer = AutoTokenizer.from_pretrained(
|
| 33 |
+
MULTILINGUAL_MODEL_NAME,
|
| 34 |
+
token=HF_TOKEN, # Use 'token' instead of deprecated 'use_auth_token'
|
| 35 |
+
cache_dir=cache_dir
|
| 36 |
+
)
|
| 37 |
multilingual_model = pipeline(
|
| 38 |
"sentiment-analysis",
|
| 39 |
model=MULTILINGUAL_MODEL_NAME,
|
| 40 |
tokenizer=multilingual_tokenizer,
|
| 41 |
+
token=HF_TOKEN, # Use 'token' instead of deprecated 'use_auth_token'
|
| 42 |
+
cache_dir=cache_dir
|
| 43 |
)
|
| 44 |
except Exception as e:
|
| 45 |
raise RuntimeError(f"Failed to load multilingual model: {e}")
|
| 46 |
|
| 47 |
# Load English sentiment model
|
| 48 |
try:
|
| 49 |
+
english_model = pipeline(
|
| 50 |
+
"sentiment-analysis",
|
| 51 |
+
model=ENGLISH_MODEL_NAME,
|
| 52 |
+
token=HF_TOKEN, # Use 'token' instead of deprecated 'use_auth_token'
|
| 53 |
+
cache_dir=cache_dir
|
| 54 |
+
)
|
| 55 |
except Exception as e:
|
| 56 |
raise RuntimeError(f"Failed to load English sentiment model: {e}")
|
| 57 |
|
|
|
|
| 78 |
@app.post("/analyze/", response_model=SentimentResponse)
|
| 79 |
def analyze_sentiment(request: SentimentRequest):
|
| 80 |
text = request.text.strip()
|
|
|
|
| 81 |
if not text:
|
| 82 |
raise HTTPException(status_code=400, detail="Text input cannot be empty.")
|
| 83 |
+
|
| 84 |
language = detect_language(text)
|
|
|
|
| 85 |
# Choose the appropriate model based on detected language
|
| 86 |
model = english_model if language == "en" else multilingual_model
|
| 87 |
result = model(text)
|
| 88 |
+
|
| 89 |
return SentimentResponse(
|
| 90 |
original_text=text,
|
| 91 |
language_detected=language,
|