Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,91 +1,36 @@
|
|
| 1 |
-
|
| 2 |
-
from
|
| 3 |
-
from
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
# Modelo
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
}
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
"it": "ita_Latn",
|
| 38 |
-
"pt": "por_Latn",
|
| 39 |
-
"nl": "nld_Latn",
|
| 40 |
-
"ru": "rus_Cyrl",
|
| 41 |
-
"ja": "jpn_Jpan",
|
| 42 |
-
"zh": "zho_Hans",
|
| 43 |
-
}
|
| 44 |
-
|
| 45 |
-
def translate_text(text, target_lang):
|
| 46 |
-
if not text.strip():
|
| 47 |
-
return "⚠️ No hay texto para traducir."
|
| 48 |
-
|
| 49 |
-
# Detectar idioma de entrada
|
| 50 |
-
try:
|
| 51 |
-
src_lang = detect(text)
|
| 52 |
-
src_lang_code = ISO_TO_NLLB.get(src_lang, "eng_Latn")
|
| 53 |
-
except Exception as e:
|
| 54 |
-
print(f"Error al detectar idioma: {e}")
|
| 55 |
-
src_lang_code = "eng_Latn"
|
| 56 |
-
|
| 57 |
-
tgt_lang_code = LANGUAGES[target_lang]
|
| 58 |
-
|
| 59 |
-
# Si ya está en el idioma deseado
|
| 60 |
-
if src_lang_code == tgt_lang_code:
|
| 61 |
-
return text
|
| 62 |
-
|
| 63 |
-
try:
|
| 64 |
-
# Obtener el token ID del idioma destino
|
| 65 |
-
tgt_lang_id = tokenizer.convert_tokens_to_ids(f"<{tgt_lang_code}>")
|
| 66 |
-
|
| 67 |
-
# Tokenizar y generar traducción
|
| 68 |
-
inputs = tokenizer(text, return_tensors="pt", truncation=True)
|
| 69 |
-
generated_tokens = model.generate(
|
| 70 |
-
**inputs,
|
| 71 |
-
forced_bos_token_id=tgt_lang_id,
|
| 72 |
-
max_length=512
|
| 73 |
-
)
|
| 74 |
-
translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
| 75 |
-
return translated_text
|
| 76 |
-
|
| 77 |
-
except Exception as e:
|
| 78 |
-
print(f"Error durante la traducción: {e}")
|
| 79 |
-
return "❌ Error en la traducción. Intenta con otro texto o idioma."
|
| 80 |
-
|
| 81 |
-
# Interfaz Gradio
|
| 82 |
-
with gr.Blocks() as demo:
|
| 83 |
-
gr.Markdown("## Traductor Profesional - NLLB-200 Distilled 600M (CPU)")
|
| 84 |
-
|
| 85 |
-
text_input = gr.Textbox(label="Ingresa el texto", lines=10)
|
| 86 |
-
text_target = gr.Dropdown(list(LANGUAGES.keys()), label="Idioma de destino")
|
| 87 |
-
text_output = gr.Textbox(label="Traducción", lines=10)
|
| 88 |
-
|
| 89 |
-
gr.Button("Traducir").click(translate_text, inputs=[text_input, text_target], outputs=text_output)
|
| 90 |
-
|
| 91 |
-
demo.launch()
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
| 4 |
+
|
| 5 |
+
app = FastAPI(title="Multilingual Translation API", description="API REST con M2M100 para traducción texto a texto 🌍", version="1.0")
|
| 6 |
+
|
| 7 |
+
# 🔤 Cargar modelo y tokenizer al iniciar
|
| 8 |
+
model_name = "facebook/m2m100_418M"
|
| 9 |
+
tokenizer = M2M100Tokenizer.from_pretrained(model_name)
|
| 10 |
+
model = M2M100ForConditionalGeneration.from_pretrained(model_name)
|
| 11 |
+
|
| 12 |
+
# 📩 Modelo del body de la solicitud
|
| 13 |
+
class TranslationRequest(BaseModel):
|
| 14 |
+
text: str
|
| 15 |
+
source_lang: str
|
| 16 |
+
target_lang: str
|
| 17 |
+
|
| 18 |
+
@app.post("/translate")
|
| 19 |
+
async def translate_text(req: TranslationRequest):
|
| 20 |
+
tokenizer.src_lang = req.source_lang
|
| 21 |
+
encoded = tokenizer(req.text, return_tensors="pt")
|
| 22 |
+
generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.get_lang_id(req.target_lang))
|
| 23 |
+
translated_text = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
|
| 24 |
+
return {
|
| 25 |
+
"source": req.text,
|
| 26 |
+
"translation": translated_text,
|
| 27 |
+
"source_lang": req.source_lang,
|
| 28 |
+
"target_lang": req.target_lang
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
+
@app.get("/")
|
| 32 |
+
async def root():
|
| 33 |
+
return {
|
| 34 |
+
"message": "🌍 Bienvenido a la API de traducción M2M100",
|
| 35 |
+
"usage": "POST /translate con {text, source_lang, target_lang}"
|
| 36 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|