Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,6 +10,7 @@ audio_model = WhisperModel("base", compute_type="int8", device="cpu")
|
|
| 10 |
text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 11 |
corpus_embeddings = torch.load('corpus_embeddings.pt')
|
| 12 |
model_type = "whisper"
|
|
|
|
| 13 |
|
| 14 |
def speech_to_text(upload_audio):
|
| 15 |
"""
|
|
@@ -29,7 +30,7 @@ def voice_detect(audio, recongnize_text=""):
|
|
| 29 |
"""
|
| 30 |
Transcribe audio using whisper model.
|
| 31 |
"""
|
| 32 |
-
# time.sleep(
|
| 33 |
if len(recongnize_text) !=0:
|
| 34 |
count_state = int(recongnize_text[0])
|
| 35 |
recongnize_text = recongnize_text[1:]
|
|
@@ -39,7 +40,7 @@ def voice_detect(audio, recongnize_text=""):
|
|
| 39 |
threshold = 0.8
|
| 40 |
detect_greeting = 0
|
| 41 |
text = speech_to_text(audio)
|
| 42 |
-
if
|
| 43 |
text = ""
|
| 44 |
recongnize_text = recongnize_text + " " + text
|
| 45 |
query_embedding = text_model.encode(text, convert_to_tensor=True)
|
|
@@ -55,18 +56,25 @@ def voice_detect(audio, recongnize_text=""):
|
|
| 55 |
recongnize_state = str(count_state + detect_greeting) + recongnize_text
|
| 56 |
return recongnize_text, recongnize_state, count_state
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
demo.launch(debug=True)
|
|
|
|
| 10 |
text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 11 |
corpus_embeddings = torch.load('corpus_embeddings.pt')
|
| 12 |
model_type = "whisper"
|
| 13 |
+
title= "Greeting detection demo app"
|
| 14 |
|
| 15 |
def speech_to_text(upload_audio):
|
| 16 |
"""
|
|
|
|
| 30 |
"""
|
| 31 |
Transcribe audio using whisper model.
|
| 32 |
"""
|
| 33 |
+
# time.sleep(2)
|
| 34 |
if len(recongnize_text) !=0:
|
| 35 |
count_state = int(recongnize_text[0])
|
| 36 |
recongnize_text = recongnize_text[1:]
|
|
|
|
| 40 |
threshold = 0.8
|
| 41 |
detect_greeting = 0
|
| 42 |
text = speech_to_text(audio)
|
| 43 |
+
if "γθ¦θ΄γγγγ¨γγγγγΎγγ" in text:
|
| 44 |
text = ""
|
| 45 |
recongnize_text = recongnize_text + " " + text
|
| 46 |
query_embedding = text_model.encode(text, convert_to_tensor=True)
|
|
|
|
| 56 |
recongnize_state = str(count_state + detect_greeting) + recongnize_text
|
| 57 |
return recongnize_text, recongnize_state, count_state
|
| 58 |
|
| 59 |
+
def clear():
|
| 60 |
+
return None, None, None
|
| 61 |
+
|
| 62 |
+
demo = gr.Blocks(title=title)
|
| 63 |
+
|
| 64 |
+
with demo:
|
| 65 |
+
gr.Markdown('''
|
| 66 |
+
<div>
|
| 67 |
+
<h1 style='text-align: center'>ζ¨ζΆγ«γ¦γ³γΏγΌ</h1>
|
| 68 |
+
</div>
|
| 69 |
+
''')
|
| 70 |
+
with gr.Row():
|
| 71 |
+
with gr.Column():
|
| 72 |
+
audio_source = gr.Audio(source="microphone", type="filepath", streaming=True)
|
| 73 |
+
state = gr.State(value="")
|
| 74 |
+
with gr.Column():
|
| 75 |
+
greeting_count = gr.Number(label="ζ¨ζΆεζ°")
|
| 76 |
+
with gr.Row():
|
| 77 |
+
text_output = gr.Textbox(label="θͺθγγγγγγΉγ")
|
| 78 |
+
audio_source.stream(voice_detect, inputs=[audio_source, state], outputs=[text_output, state, greeting_count])
|
| 79 |
|
| 80 |
demo.launch(debug=True)
|