Update README.md
Browse files
README.md
CHANGED
|
@@ -12,3 +12,91 @@ short_description: Compare sentiment predictions from two deep learning models
|
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 15 |
+
|
| 16 |
+
# π Sentiment Model Comparison App
|
| 17 |
+
|
| 18 |
+
This Streamlit app compares two sentiment classification models trained on IMDB movie reviews.
|
| 19 |
+
|
| 20 |
+
- Model A: 6M params, 50k vocab (fast & lightweight)
|
| 21 |
+
- Model B: 34M params, 256k vocab (high capacity)
|
| 22 |
+
- Ensemble: Average of both predictions
|
| 23 |
+
|
| 24 |
+
π **Live Demo:** [Try it on Spaces](https://huggingface.co/spaces/Daksh0505/sentiment-model-comparison)
|
| 25 |
+
|
| 26 |
+
---
|
| 27 |
+
|
| 28 |
+
## π Features
|
| 29 |
+
|
| 30 |
+
- Enter single review text or upload a CSV (`review` column)
|
| 31 |
+
- Get predictions from both models + ensemble average
|
| 32 |
+
- Compare probabilities visually
|
| 33 |
+
- Submit feedback (saved to Google Sheets)
|
| 34 |
+
|
| 35 |
+
---
|
| 36 |
+
|
| 37 |
+
## π Dataset
|
| 38 |
+
|
| 39 |
+
- **Source:** [IMDB Multi-Movie Dataset](https://huggingface.co/datasets/Daksh0505/IMDB-Reviews)
|
| 40 |
+
|
| 41 |
+
```bibtex
|
| 42 |
+
@misc{imdb-multimovie-reviews,
|
| 43 |
+
title = {IMDb Multi-Movie Review Dataset},
|
| 44 |
+
author = {Daksh Bhardwaj},
|
| 45 |
+
year = {2025},
|
| 46 |
+
url = {https://huggingface.co/datasets/Daksh0505/IMDB-Reviews}
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
---
|
| 50 |
+
|
| 51 |
+
## π§ Models
|
| 52 |
+
|
| 53 |
+
### πΉ Model A
|
| 54 |
+
- Filename: `sentiment_model_imdb_6.6M.keras`
|
| 55 |
+
- **Trainable Parameters**: ~6.6 million
|
| 56 |
+
- **Total Parameters**: ~13.06 million
|
| 57 |
+
- **Vocabulary Size**: 50,000 tokens
|
| 58 |
+
- Description: Lightweight and efficient; optimized for speed.
|
| 59 |
+
|
| 60 |
+
### πΉ Model B
|
| 61 |
+
- Filename: `sentiment_model_imdb_34M.keras`
|
| 62 |
+
- **Trainable Parameters**: ~34 million
|
| 63 |
+
- **Total Parameters**: ~99.43 million
|
| 64 |
+
- **Vocabulary Size**: 256,000 tokens
|
| 65 |
+
- Description: Larger and more expressive; higher accuracy on nuanced reviews.
|
| 66 |
+
|
| 67 |
+
---
|
| 68 |
+
|
| 69 |
+
## π Tokenizers
|
| 70 |
+
|
| 71 |
+
Each model uses its own tokenizer in Keras JSON format:
|
| 72 |
+
|
| 73 |
+
- `tokenizer_50k.json` β used with Model A
|
| 74 |
+
- `tokenizer_256k.json` β used with Model B
|
| 75 |
+
|
| 76 |
+
---
|
| 77 |
+
|
| 78 |
+
## π§ Load Models & Tokenizers (from Hugging Face Hub)
|
| 79 |
+
|
| 80 |
+
```python
|
| 81 |
+
from huggingface_hub import hf_hub_download
|
| 82 |
+
from tensorflow.keras.models import load_model
|
| 83 |
+
from tensorflow.keras.preprocessing.text import tokenizer_from_json
|
| 84 |
+
import json
|
| 85 |
+
|
| 86 |
+
# === Model A ===
|
| 87 |
+
model_path_a = hf_hub_download(repo_id="Daksh0505/sentiment-model-imdb", filename="sentiment_model_imdb_6.6M.keras")
|
| 88 |
+
tokenizer_path_a = hf_hub_download(repo_id="Daksh0505/sentiment-model-imdb", filename="tokenizer_50k.json")
|
| 89 |
+
|
| 90 |
+
with open(tokenizer_path_a, "r") as f:
|
| 91 |
+
tokenizer_a = tokenizer_from_json(json.load(f))
|
| 92 |
+
|
| 93 |
+
model_a = load_model(model_path_a)
|
| 94 |
+
|
| 95 |
+
# === Model B ===
|
| 96 |
+
model_path_b = hf_hub_download(repo_id="Daksh0505/sentiment-model-imdb", filename="sentiment_model_imdb_34M.keras")
|
| 97 |
+
tokenizer_path_b = hf_hub_download(repo_id="Daksh0505/sentiment-model-imdb", filename="tokenizer_256k.json")
|
| 98 |
+
|
| 99 |
+
with open(tokenizer_path_b, "r") as f:
|
| 100 |
+
tokenizer_b = tokenizer_from_json(json.load(f))
|
| 101 |
+
|
| 102 |
+
model_b = load_model(model_path_b)
|