Spaces:
Build error
Build error
| import glob | |
| import random | |
| import time | |
| from typing import Any, Callable, Dict, List, Optional, Union | |
| # import moxing as mox | |
| import numpy as np | |
| import torch | |
| from diffusers.loaders import TextualInversionLoaderMixin | |
| from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
| from diffusers.models.attention_processor import Attention | |
| from diffusers.pipelines.stable_diffusion import ( | |
| StableDiffusionPipeline, | |
| StableDiffusionPipelineOutput, | |
| StableDiffusionSafetyChecker, | |
| ) | |
| from diffusers.schedulers import KarrasDiffusionSchedulers | |
| from diffusers.utils import logging | |
| from PIL import Image, ImageDraw, ImageFont | |
| from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection | |
| import inspect | |
| import os | |
| import math | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| # from utils import load_utils | |
| import argparse | |
| import yaml | |
| import cv2 | |
| import math | |
| from migc.migc_arch import MIGC, NaiveFuser | |
| from scipy.ndimage import uniform_filter, gaussian_filter | |
| logger = logging.get_logger(__name__) | |
| class AttentionStore: | |
| def get_empty_store(): | |
| return {"down": [], "mid": [], "up": []} | |
| def __call__(self, attn, is_cross: bool, place_in_unet: str): | |
| if is_cross: | |
| if attn.shape[1] in self.attn_res: | |
| self.step_store[place_in_unet].append(attn) | |
| self.cur_att_layer += 1 | |
| if self.cur_att_layer == self.num_att_layers: | |
| self.cur_att_layer = 0 | |
| self.between_steps() | |
| def between_steps(self): | |
| self.attention_store = self.step_store | |
| self.step_store = self.get_empty_store() | |
| def maps(self, block_type: str): | |
| return self.attention_store[block_type] | |
| def reset(self): | |
| self.cur_att_layer = 0 | |
| self.step_store = self.get_empty_store() | |
| self.attention_store = {} | |
| def __init__(self, attn_res=[64*64, 32*32, 16*16, 8*8]): | |
| """ | |
| Initialize an empty AttentionStore :param step_index: used to visualize only a specific step in the diffusion | |
| process | |
| """ | |
| self.num_att_layers = -1 | |
| self.cur_att_layer = 0 | |
| self.step_store = self.get_empty_store() | |
| self.attention_store = {} | |
| self.curr_step_index = 0 | |
| self.attn_res = attn_res | |
| def get_sup_mask(mask_list): | |
| or_mask = np.zeros_like(mask_list[0]) | |
| for mask in mask_list: | |
| or_mask += mask | |
| or_mask[or_mask >= 1] = 1 | |
| sup_mask = 1 - or_mask | |
| return sup_mask | |
| class MIGCProcessor(nn.Module): | |
| def __init__(self, config, attnstore, place_in_unet): | |
| super().__init__() | |
| self.attnstore = attnstore | |
| self.place_in_unet = place_in_unet | |
| self.not_use_migc = config['not_use_migc'] | |
| self.naive_fuser = NaiveFuser() | |
| self.embedding = {} | |
| if not self.not_use_migc: | |
| self.migc = MIGC(config['C']) | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| prompt_nums=[], | |
| bboxes=[], | |
| ith=None, | |
| embeds_pooler=None, | |
| timestep=None, | |
| height=512, | |
| width=512, | |
| MIGCsteps=20, | |
| NaiveFuserSteps=-1, | |
| ca_scale=None, | |
| ea_scale=None, | |
| sac_scale=None, | |
| use_sa_preserve=False, | |
| sa_preserve=False, | |
| ): | |
| batch_size, sequence_length, _ = hidden_states.shape | |
| assert(batch_size == 2, "We currently only implement sampling with batch_size=1, \ | |
| and we will implement sampling with batch_size=N as soon as possible.") | |
| attention_mask = attn.prepare_attention_mask( | |
| attention_mask, sequence_length, batch_size | |
| ) | |
| instance_num = len(bboxes[0]) | |
| if ith > MIGCsteps: | |
| not_use_migc = True | |
| else: | |
| not_use_migc = self.not_use_migc | |
| is_vanilla_cross = (not_use_migc and ith > NaiveFuserSteps) | |
| if instance_num == 0: | |
| is_vanilla_cross = True | |
| is_cross = encoder_hidden_states is not None | |
| ori_hidden_states = hidden_states.clone() | |
| # Only Need Negative Prompt and Global Prompt. | |
| if is_cross and is_vanilla_cross: | |
| encoder_hidden_states = encoder_hidden_states[:2, ...] | |
| # In this case, we need to use MIGC or naive_fuser, so we copy the hidden_states_cond (instance_num+1) times for QKV | |
| if is_cross and not is_vanilla_cross: | |
| hidden_states_uncond = hidden_states[[0], ...] | |
| hidden_states_cond = hidden_states[[1], ...].repeat(instance_num + 1, 1, 1) | |
| hidden_states = torch.cat([hidden_states_uncond, hidden_states_cond]) | |
| # QKV Operation of Vanilla Self-Attention or Cross-Attention | |
| query = attn.to_q(hidden_states) | |
| if ( | |
| not is_cross | |
| and use_sa_preserve | |
| and timestep.item() in self.embedding | |
| and self.place_in_unet == "up" | |
| ): | |
| hidden_states = torch.cat((hidden_states, torch.from_numpy(self.embedding[timestep.item()]).to(hidden_states.device)), dim=1) | |
| if not is_cross and sa_preserve and self.place_in_unet == "up": | |
| self.embedding[timestep.item()] = ori_hidden_states.cpu().numpy() | |
| encoder_hidden_states = ( | |
| encoder_hidden_states | |
| if encoder_hidden_states is not None | |
| else hidden_states | |
| ) | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| query = attn.head_to_batch_dim(query) | |
| key = attn.head_to_batch_dim(key) | |
| value = attn.head_to_batch_dim(value) | |
| attention_probs = attn.get_attention_scores(query, key, attention_mask) # 48 4096 77 | |
| self.attnstore(attention_probs, is_cross, self.place_in_unet) | |
| hidden_states = torch.bmm(attention_probs, value) | |
| hidden_states = attn.batch_to_head_dim(hidden_states) | |
| hidden_states = attn.to_out[0](hidden_states) | |
| hidden_states = attn.to_out[1](hidden_states) | |
| ###### Self-Attention Results ###### | |
| if not is_cross: | |
| return hidden_states | |
| ###### Vanilla Cross-Attention Results ###### | |
| if is_vanilla_cross: | |
| return hidden_states | |
| ###### Cross-Attention with MIGC ###### | |
| assert (not is_vanilla_cross) | |
| # hidden_states: torch.Size([1+1+instance_num, HW, C]), the first 1 is the uncond ca output, the second 1 is the global ca output. | |
| hidden_states_uncond = hidden_states[[0], ...] # torch.Size([1, HW, C]) | |
| cond_ca_output = hidden_states[1: , ...].unsqueeze(0) # torch.Size([1, 1+instance_num, 5, 64, 1280]) | |
| guidance_masks = [] | |
| in_box = [] | |
| # Construct Instance Guidance Mask | |
| for bbox in bboxes[0]: | |
| guidance_mask = np.zeros((height, width)) | |
| w_min = int(width * bbox[0]) | |
| w_max = int(width * bbox[2]) | |
| h_min = int(height * bbox[1]) | |
| h_max = int(height * bbox[3]) | |
| guidance_mask[h_min: h_max, w_min: w_max] = 1.0 | |
| guidance_masks.append(guidance_mask[None, ...]) | |
| in_box.append([bbox[0], bbox[2], bbox[1], bbox[3]]) | |
| # Construct Background Guidance Mask | |
| sup_mask = get_sup_mask(guidance_masks) | |
| supplement_mask = torch.from_numpy(sup_mask[None, ...]) | |
| supplement_mask = F.interpolate(supplement_mask, (height//8, width//8), mode='bilinear').float() | |
| supplement_mask = supplement_mask.to(hidden_states.device) # (1, 1, H, W) | |
| guidance_masks = np.concatenate(guidance_masks, axis=0) | |
| guidance_masks = guidance_masks[None, ...] | |
| guidance_masks = torch.from_numpy(guidance_masks).float().to(cond_ca_output.device) | |
| guidance_masks = F.interpolate(guidance_masks, (height//8, width//8), mode='bilinear') # (1, instance_num, H, W) | |
| in_box = torch.from_numpy(np.array(in_box))[None, ...].float().to(cond_ca_output.device) # (1, instance_num, 4) | |
| other_info = {} | |
| other_info['image_token'] = hidden_states_cond[None, ...] | |
| other_info['context'] = encoder_hidden_states[1:, ...] | |
| other_info['box'] = in_box | |
| other_info['context_pooler'] =embeds_pooler # (instance_num, 1, 768) | |
| other_info['supplement_mask'] = supplement_mask | |
| other_info['attn2'] = None | |
| other_info['attn'] = attn | |
| other_info['height'] = height | |
| other_info['width'] = width | |
| other_info['ca_scale'] = ca_scale | |
| other_info['ea_scale'] = ea_scale | |
| other_info['sac_scale'] = sac_scale | |
| if not not_use_migc: | |
| hidden_states_cond, fuser_info = self.migc(cond_ca_output, | |
| guidance_masks, | |
| other_info=other_info, | |
| return_fuser_info=True) | |
| else: | |
| hidden_states_cond, fuser_info = self.naive_fuser(cond_ca_output, | |
| guidance_masks, | |
| other_info=other_info, | |
| return_fuser_info=True) | |
| hidden_states_cond = hidden_states_cond.squeeze(1) | |
| hidden_states = torch.cat([hidden_states_uncond, hidden_states_cond]) | |
| return hidden_states | |
| class StableDiffusionMIGCPipeline(StableDiffusionPipeline): | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| scheduler: KarrasDiffusionSchedulers, | |
| safety_checker: StableDiffusionSafetyChecker, | |
| feature_extractor: CLIPImageProcessor, | |
| image_encoder: CLIPVisionModelWithProjection = None, | |
| requires_safety_checker: bool = True, | |
| ): | |
| # Get the parameter signature of the parent class constructor | |
| parent_init_signature = inspect.signature(super().__init__) | |
| parent_init_params = parent_init_signature.parameters | |
| # Dynamically build a parameter dictionary based on the parameters of the parent class constructor | |
| init_kwargs = { | |
| "vae": vae, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "unet": unet, | |
| "scheduler": scheduler, | |
| "safety_checker": safety_checker, | |
| "feature_extractor": feature_extractor, | |
| "requires_safety_checker": requires_safety_checker | |
| } | |
| if 'image_encoder' in parent_init_params.items(): | |
| init_kwargs['image_encoder'] = image_encoder | |
| super().__init__(**init_kwargs) | |
| self.instance_set = set() | |
| self.embedding = {} | |
| def _encode_prompt( | |
| self, | |
| prompts, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt=None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| """ | |
| if prompts is not None and isinstance(prompts, str): | |
| batch_size = 1 | |
| elif prompts is not None and isinstance(prompts, list): | |
| batch_size = len(prompts) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| prompt_embeds_none_flag = (prompt_embeds is None) | |
| prompt_embeds_list = [] | |
| embeds_pooler_list = [] | |
| for prompt in prompts: | |
| if prompt_embeds_none_flag: | |
| # textual inversion: procecss multi-vector tokens if necessary | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer( | |
| prompt, padding="longest", return_tensors="pt" | |
| ).input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[ | |
| -1 | |
| ] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode( | |
| untruncated_ids[:, self.tokenizer.model_max_length - 1: -1] | |
| ) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| if ( | |
| hasattr(self.text_encoder.config, "use_attention_mask") | |
| and self.text_encoder.config.use_attention_mask | |
| ): | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| prompt_embeds = self.text_encoder( | |
| text_input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| embeds_pooler = prompt_embeds.pooler_output | |
| prompt_embeds = prompt_embeds[0] | |
| prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
| embeds_pooler = embeds_pooler.to(dtype=self.text_encoder.dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| embeds_pooler = embeds_pooler.repeat(1, num_images_per_prompt) | |
| prompt_embeds = prompt_embeds.view( | |
| bs_embed * num_images_per_prompt, seq_len, -1 | |
| ) | |
| embeds_pooler = embeds_pooler.view( | |
| bs_embed * num_images_per_prompt, -1 | |
| ) | |
| prompt_embeds_list.append(prompt_embeds) | |
| embeds_pooler_list.append(embeds_pooler) | |
| prompt_embeds = torch.cat(prompt_embeds_list, dim=0) | |
| embeds_pooler = torch.cat(embeds_pooler_list, dim=0) | |
| # negative_prompt_embeds: (prompt_nums[0]+prompt_nums[1]+...prompt_nums[n], token_num, token_channel), <class 'torch.Tensor'> | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| negative_prompt = "worst quality, low quality, bad anatomy" | |
| uncond_tokens = [negative_prompt] * batch_size | |
| # textual inversion: procecss multi-vector tokens if necessary | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| if ( | |
| hasattr(self.text_encoder.config, "use_attention_mask") | |
| and self.text_encoder.config.use_attention_mask | |
| ): | |
| attention_mask = uncond_input.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| negative_prompt_embeds = self.text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds[0] | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to( | |
| dtype=self.text_encoder.dtype, device=device | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat( | |
| 1, num_images_per_prompt, 1 | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds.view( | |
| batch_size * num_images_per_prompt, seq_len, -1 | |
| ) | |
| # negative_prompt_embeds: (len(prompt_nums), token_num, token_channel), <class 'torch.Tensor'> | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| final_prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| return final_prompt_embeds, prompt_embeds, embeds_pooler[:, None, :] | |
| def check_inputs( | |
| self, | |
| prompt, | |
| token_indices, | |
| bboxes, | |
| height, | |
| width, | |
| callback_steps, | |
| negative_prompt=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| ): | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError( | |
| f"`height` and `width` have to be divisible by 8 but are {height} and {width}." | |
| ) | |
| if (callback_steps is None) or ( | |
| callback_steps is not None | |
| and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and ( | |
| not isinstance(prompt, str) and not isinstance(prompt, list) | |
| ): | |
| raise ValueError( | |
| f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" | |
| ) | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| if token_indices is not None: | |
| if isinstance(token_indices, list): | |
| if isinstance(token_indices[0], list): | |
| if isinstance(token_indices[0][0], list): | |
| token_indices_batch_size = len(token_indices) | |
| elif isinstance(token_indices[0][0], int): | |
| token_indices_batch_size = 1 | |
| else: | |
| raise TypeError( | |
| "`token_indices` must be a list of lists of integers or a list of integers." | |
| ) | |
| else: | |
| raise TypeError( | |
| "`token_indices` must be a list of lists of integers or a list of integers." | |
| ) | |
| else: | |
| raise TypeError( | |
| "`token_indices` must be a list of lists of integers or a list of integers." | |
| ) | |
| if bboxes is not None: | |
| if isinstance(bboxes, list): | |
| if isinstance(bboxes[0], list): | |
| if ( | |
| isinstance(bboxes[0][0], list) | |
| and len(bboxes[0][0]) == 4 | |
| and all(isinstance(x, float) for x in bboxes[0][0]) | |
| ): | |
| bboxes_batch_size = len(bboxes) | |
| elif ( | |
| isinstance(bboxes[0], list) | |
| and len(bboxes[0]) == 4 | |
| and all(isinstance(x, float) for x in bboxes[0]) | |
| ): | |
| bboxes_batch_size = 1 | |
| else: | |
| print(isinstance(bboxes[0], list), len(bboxes[0])) | |
| raise TypeError( | |
| "`bboxes` must be a list of lists of list with four floats or a list of tuples with four floats." | |
| ) | |
| else: | |
| print(isinstance(bboxes[0], list), len(bboxes[0])) | |
| raise TypeError( | |
| "`bboxes` must be a list of lists of list with four floats or a list of tuples with four floats." | |
| ) | |
| else: | |
| print(isinstance(bboxes[0], list), len(bboxes[0])) | |
| raise TypeError( | |
| "`bboxes` must be a list of lists of list with four floats or a list of tuples with four floats." | |
| ) | |
| if prompt is not None and isinstance(prompt, str): | |
| prompt_batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| prompt_batch_size = len(prompt) | |
| elif prompt_embeds is not None: | |
| prompt_batch_size = prompt_embeds.shape[0] | |
| if token_indices_batch_size != prompt_batch_size: | |
| raise ValueError( | |
| f"token indices batch size must be same as prompt batch size. token indices batch size: {token_indices_batch_size}, prompt batch size: {prompt_batch_size}" | |
| ) | |
| if bboxes_batch_size != prompt_batch_size: | |
| raise ValueError( | |
| f"bbox batch size must be same as prompt batch size. bbox batch size: {bboxes_batch_size}, prompt batch size: {prompt_batch_size}" | |
| ) | |
| def get_indices(self, prompt: str) -> Dict[str, int]: | |
| """Utility function to list the indices of the tokens you wish to alte""" | |
| ids = self.tokenizer(prompt).input_ids | |
| indices = { | |
| i: tok | |
| for tok, i in zip( | |
| self.tokenizer.convert_ids_to_tokens(ids), range(len(ids)) | |
| ) | |
| } | |
| return indices | |
| def draw_box(pil_img: Image, bboxes: List[List[float]]) -> Image: | |
| """Utility function to draw bbox on the image""" | |
| width, height = pil_img.size | |
| draw = ImageDraw.Draw(pil_img) | |
| for obj_box in bboxes: | |
| x_min, y_min, x_max, y_max = ( | |
| obj_box[0] * width, | |
| obj_box[1] * height, | |
| obj_box[2] * width, | |
| obj_box[3] * height, | |
| ) | |
| draw.rectangle( | |
| [int(x_min), int(y_min), int(x_max), int(y_max)], | |
| outline="red", | |
| width=4, | |
| ) | |
| return pil_img | |
| def draw_box_desc(pil_img: Image, bboxes: List[List[float]], prompt: List[str]) -> Image: | |
| """Utility function to draw bbox on the image""" | |
| color_list = ['red', 'blue', 'yellow', 'purple', 'green', 'black', 'brown', 'orange', 'white', 'gray'] | |
| width, height = pil_img.size | |
| draw = ImageDraw.Draw(pil_img) | |
| font_folder = os.path.dirname(os.path.dirname(__file__)) | |
| font_path = os.path.join(font_folder, 'Rainbow-Party-2.ttf') | |
| font = ImageFont.truetype(font_path, 30) | |
| for box_id in range(len(bboxes)): | |
| obj_box = bboxes[box_id] | |
| text = prompt[box_id] | |
| fill = 'black' | |
| for color in prompt[box_id].split(' '): | |
| if color in color_list: | |
| fill = color | |
| text = text.split(',')[0] | |
| x_min, y_min, x_max, y_max = ( | |
| obj_box[0] * width, | |
| obj_box[1] * height, | |
| obj_box[2] * width, | |
| obj_box[3] * height, | |
| ) | |
| draw.rectangle( | |
| [int(x_min), int(y_min), int(x_max), int(y_max)], | |
| outline=fill, | |
| width=4, | |
| ) | |
| draw.text((int(x_min), int(y_min)), text, fill=fill, font=font) | |
| return pil_img | |
| def __call__( | |
| self, | |
| prompt: List[List[str]] = None, | |
| bboxes: List[List[List[float]]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| MIGCsteps=20, | |
| NaiveFuserSteps=-1, | |
| ca_scale=None, | |
| ea_scale=None, | |
| sac_scale=None, | |
| aug_phase_with_and=False, | |
| sa_preserve=False, | |
| use_sa_preserve=False, | |
| clear_set=False, | |
| GUI_progress=None | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| token_indices (Union[List[List[List[int]]], List[List[int]]], optional): | |
| The list of the indexes in the prompt to layout. Defaults to None. | |
| bboxes (Union[List[List[List[float]]], List[List[float]]], optional): | |
| The bounding boxes of the indexes to maintain layout in the image. Defaults to None. | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. The function will be | |
| called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function will be called. If not specified, the callback will be | |
| called at every step. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). | |
| max_guidance_iter (`int`, *optional*, defaults to `10`): | |
| The maximum number of iterations for the layout guidance on attention maps in diffusion mode. | |
| max_guidance_iter_per_step (`int`, *optional*, defaults to `5`): | |
| The maximum number of iterations to run during each time step for layout guidance. | |
| scale_factor (`int`, *optional*, defaults to `50`): | |
| The scale factor used to update the latents during optimization. | |
| Examples: | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
| When returning a tuple, the first element is a list with the generated images, and the second element is a | |
| list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
| (nsfw) content, according to the `safety_checker`. | |
| """ | |
| def aug_phase_with_and_function(phase, instance_num): | |
| instance_num = min(instance_num, 7) | |
| copy_phase = [phase] * instance_num | |
| phase = ', and '.join(copy_phase) | |
| return phase | |
| if aug_phase_with_and: | |
| instance_num = len(prompt[0]) - 1 | |
| for i in range(1, len(prompt[0])): | |
| prompt[0][i] = aug_phase_with_and_function(prompt[0][i], | |
| instance_num) | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| prompt_nums = [0] * len(prompt) | |
| for i, _ in enumerate(prompt): | |
| prompt_nums[i] = len(_) | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| prompt_embeds, cond_prompt_embeds, embeds_pooler = self._encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| ) | |
| # print(prompt_embeds.shape) 3 77 768 | |
| # 4. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 7. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| if clear_set: | |
| self.instance_set = set() | |
| self.embedding = {} | |
| now_set = set() | |
| for i in range(len(bboxes[0])): | |
| now_set.add((tuple(bboxes[0][i]), prompt[0][i + 1])) | |
| mask_set = (now_set | self.instance_set) - (now_set & self.instance_set) | |
| self.instance_set = now_set | |
| guidance_mask = np.full((4, height // 8, width // 8), 1.0) | |
| for bbox, _ in mask_set: | |
| w_min = max(0, int(width * bbox[0] // 8) - 5) | |
| w_max = min(width, int(width * bbox[2] // 8) + 5) | |
| h_min = max(0, int(height * bbox[1] // 8) - 5) | |
| h_max = min(height, int(height * bbox[3] // 8) + 5) | |
| guidance_mask[:, h_min:h_max, w_min:w_max] = 0 | |
| kernal_size = 5 | |
| guidance_mask = uniform_filter( | |
| guidance_mask, axes = (1, 2), size = kernal_size | |
| ) | |
| guidance_mask = torch.from_numpy(guidance_mask).to(self.device).unsqueeze(0) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if GUI_progress is not None: | |
| GUI_progress[0] = int((i + 1) / len(timesteps) * 100) | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = ( | |
| torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| ) | |
| latent_model_input = self.scheduler.scale_model_input( | |
| latent_model_input, t | |
| ) | |
| # predict the noise residual | |
| cross_attention_kwargs = {'prompt_nums': prompt_nums, | |
| 'bboxes': bboxes, | |
| 'ith': i, | |
| 'embeds_pooler': embeds_pooler, | |
| 'timestep': t, | |
| 'height': height, | |
| 'width': width, | |
| 'MIGCsteps': MIGCsteps, | |
| 'NaiveFuserSteps': NaiveFuserSteps, | |
| 'ca_scale': ca_scale, | |
| 'ea_scale': ea_scale, | |
| 'sac_scale': sac_scale, | |
| 'sa_preserve': sa_preserve, | |
| 'use_sa_preserve': use_sa_preserve} | |
| self.unet.eval() | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ).sample | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * ( | |
| noise_pred_text - noise_pred_uncond | |
| ) | |
| step_output = self.scheduler.step( | |
| noise_pred, t, latents, **extra_step_kwargs | |
| ) | |
| latents = step_output.prev_sample | |
| ori_input = latents.detach().clone() | |
| if use_sa_preserve and i in self.embedding: | |
| latents = ( | |
| latents * (1.0 - guidance_mask) | |
| + torch.from_numpy(self.embedding[i]).to(latents.device) * guidance_mask | |
| ).float() | |
| if sa_preserve: | |
| self.embedding[i] = ori_input.cpu().numpy() | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ( | |
| (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | |
| ): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| if output_type == "latent": | |
| image = latents | |
| elif output_type == "pil": | |
| # 8. Post-processing | |
| image = self.decode_latents(latents) | |
| image = self.numpy_to_pil(image) | |
| else: | |
| # 8. Post-processing | |
| image = self.decode_latents(latents) | |
| # Offload last model to CPU | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.final_offload_hook.offload() | |
| if not return_dict: | |
| return (image, None) | |
| return StableDiffusionPipelineOutput( | |
| images=image, nsfw_content_detected=None | |
| ) |