Spaces:
Sleeping
Sleeping
File size: 15,915 Bytes
a8d3381 34b56b2 a8d3381 34b56b2 4cb2d06 a8d3381 34b56b2 a8d3381 34b56b2 a8d3381 34b56b2 a8d3381 34b56b2 a8d3381 34b56b2 a8d3381 4cb2d06 34b56b2 a8d3381 34b56b2 a8d3381 34b56b2 a8d3381 34b56b2 a8d3381 34b56b2 a8d3381 34b56b2 a8d3381 34b56b2 a8d3381 34b56b2 a8d3381 34b56b2 a8d3381 34b56b2 a8d3381 34b56b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
from __future__ import annotations
import json
import logging
from dataclasses import asdict, dataclass, replace
from datetime import datetime
from typing import Any, Dict, List, Mapping, Tuple
from coco_classes import canonicalize_coco_name, coco_class_catalog
from mission_context import (
MissionClass,
MissionContext,
MissionPlan,
MISSION_TYPE_OPTIONS,
LOCATION_TYPE_OPTIONS,
TIME_OF_DAY_OPTIONS,
PRIORITY_LEVEL_OPTIONS,
PipelineRecommendation,
build_prompt_hints,
)
from pipeline_registry import (
PIPELINE_SPECS,
fallback_pipeline_for_context,
filter_pipelines_for_context,
get_pipeline_spec,
)
from prompt import mission_planner_system_prompt, mission_planner_user_prompt
from utils.openai_client import get_openai_client
DEFAULT_OPENAI_MODEL = "gpt-4o-mini"
class MissionReasoner:
def __init__(
self,
*,
model_name: str = DEFAULT_OPENAI_MODEL,
top_k: int = 10,
) -> None:
self._model_name = model_name
self._top_k = top_k
self._coco_catalog = coco_class_catalog()
def plan(
self,
mission: str,
*,
context: MissionContext,
cues: Mapping[str, Any] | None = None,
) -> MissionPlan:
mission = (mission or "").strip()
if not mission:
raise ValueError("Mission prompt cannot be empty.")
available_pipelines = self._candidate_pipelines(mission, context, cues)
candidate_ids = [spec["id"] for spec in available_pipelines] or [PIPELINE_SPECS[0]["id"]]
lock_pipeline_id = candidate_ids[0] if len(candidate_ids) == 1 else None
response_payload = self._query_llm(
mission,
context=context,
cues=None,
pipeline_ids=candidate_ids,
)
relevant = self._parse_plan(response_payload, fallback_mission=mission)
enriched_context = self._merge_context(context, response_payload.get("context"))
if lock_pipeline_id:
pipeline_rec = PipelineRecommendation(
primary_id=lock_pipeline_id,
primary_reason="Only pipeline compatible with mission context.",
)
else:
pipeline_rec = self._parse_pipeline_recommendation(
response_payload.get("pipelines") or response_payload.get("pipeline"),
available_pipelines,
context,
)
return MissionPlan(
mission=response_payload.get("mission", mission),
relevant_classes=relevant[: self._top_k],
context=enriched_context,
pipeline=pipeline_rec,
)
def _render_pipeline_catalog(self, specs: List[Dict[str, object]]) -> str:
if not specs:
return "No compatible pipelines available."
sections: List[str] = []
for spec in specs:
reason = spec.get("availability_reason") or "Compatible with mission context."
hf_bindings = spec.get("huggingface") or {}
def _format_models(models: List[Dict[str, object]]) -> str:
if not models:
return "none"
labels = []
for entry in models:
model_id = entry.get("model_id") or entry.get("name") or "unknown"
label = entry.get("label") or model_id
suffix = " (optional)" if entry.get("optional") else ""
labels.append(f"{label}{suffix}")
return ", ".join(labels)
detection_models = _format_models(hf_bindings.get("detection", []))
segmentation_models = _format_models(hf_bindings.get("segmentation", []))
tracking_models = _format_models(hf_bindings.get("tracking", []))
hf_notes = hf_bindings.get("notes") or ""
sections.append(
"\n".join(
[
f"{spec['id']} pipeline",
f" Modalities: {', '.join(spec.get('modalities', ())) or 'unspecified'}",
f" Locations: {', '.join(spec.get('location_types', ())) or 'any'}",
f" Time of day: {', '.join(spec.get('time_of_day', ())) or 'any'}",
f" Availability: {reason}",
f" HF detection: {detection_models}",
f" HF segmentation: {segmentation_models}",
f" Tracking: {tracking_models}",
f" Notes: {hf_notes or 'n/a'}",
]
)
)
return "\n\n".join(sections)
def _candidate_pipelines(
self,
mission: str,
context: MissionContext,
cues: Mapping[str, Any] | None,
) -> List[Dict[str, object]]:
filtered = filter_pipelines_for_context(context)
if filtered:
return filtered
fallback_spec = fallback_pipeline_for_context(context, [])
if fallback_spec is None:
logging.error("No fallback pipeline available; mission context=%s", context)
return [dict(spec) for spec in PIPELINE_SPECS]
logging.warning(
"No compatible pipelines for context %s; selecting fallback %s.",
context,
fallback_spec["id"],
)
fallback_copy = dict(fallback_spec)
fallback_copy["availability_reason"] = (
"Fallback engaged because no specialized pipeline matched this mission context."
)
return [fallback_copy]
def _query_llm(
self,
mission: str,
*,
context: MissionContext,
cues: Mapping[str, Any] | None = None,
pipeline_ids: List[str] | None,
) -> Dict[str, object]:
client = get_openai_client()
system_prompt = mission_planner_system_prompt()
context_payload = context.to_prompt_payload()
user_prompt = mission_planner_user_prompt(
mission,
self._top_k,
context=context_payload,
cues=cues,
pipeline_candidates=pipeline_ids,
coco_catalog=self._coco_catalog,
)
completion = client.chat.completions.create(
model=self._model_name,
temperature=0.1,
response_format={"type": "json_object"},
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
],
)
content = completion.choices[0].message.content or "{}"
try:
return json.loads(content)
except json.JSONDecodeError:
logging.exception("LLM returned non-JSON content: %s", content)
return {"mission": mission, "classes": []}
def _parse_plan(self, payload: Dict[str, object], fallback_mission: str) -> List[MissionClass]:
entries = (
payload.get("entities")
or payload.get("classes")
or payload.get("relevant_classes")
or []
)
mission = payload.get("mission") or fallback_mission
parsed: List[MissionClass] = []
seen = set()
for entry in entries:
if not isinstance(entry, dict):
continue
name = str(entry.get("name") or "").strip()
if not name:
continue
canonical_name = canonicalize_coco_name(name)
if not canonical_name:
logging.warning("Skipping non-COCO entity '%s'.", name)
continue
if canonical_name in seen:
continue
seen.add(canonical_name)
score_raw = entry.get("score")
try:
score = float(score_raw)
except (TypeError, ValueError):
score = 0.5
rationale = str(entry.get("rationale") or f"Track '{name}' for mission '{mission}'.")
parsed.append(
MissionClass(
name=canonical_name,
score=max(0.0, min(1.0, score)),
rationale=rationale,
)
)
if not parsed:
raise RuntimeError("LLM returned no semantic entities; aborting instead of fabricating outputs.")
return parsed
def _merge_context(
self,
base_context: MissionContext,
context_payload: Dict[str, object] | None,
) -> MissionContext:
payload = context_payload or {}
if not isinstance(payload, dict):
return base_context
def _coerce_choice(value: object | None, allowed: Tuple[str, ...]) -> str | None:
if value is None:
return None
candidate = str(value).strip().lower()
return candidate if candidate in allowed else None
updates: Dict[str, Any] = {}
new_mission_type = _coerce_choice(payload.get("mission_type"), MISSION_TYPE_OPTIONS)
new_location_type = _coerce_choice(payload.get("location_type"), LOCATION_TYPE_OPTIONS)
new_time_of_day = _coerce_choice(payload.get("time_of_day"), TIME_OF_DAY_OPTIONS)
new_priority = _coerce_choice(payload.get("priority_level"), PRIORITY_LEVEL_OPTIONS)
if new_mission_type:
updates["mission_type"] = new_mission_type
if new_location_type:
updates["location_type"] = new_location_type
if new_time_of_day:
updates["time_of_day"] = new_time_of_day
if new_priority:
updates["priority_level"] = new_priority
if not updates:
return base_context
return replace(base_context, **updates)
def _parse_pipeline_recommendation(
self,
payload: object,
available_specs: List[Dict[str, object]],
context: MissionContext,
) -> PipelineRecommendation | None:
if not isinstance(payload, dict):
return self._validate_pipeline_selection(None, available_specs, context)
if "id" in payload or "pipeline_id" in payload or "pipeline" in payload:
pipeline_id_raw = payload.get("id") or payload.get("pipeline_id") or payload.get("pipeline")
pipeline_id = str(pipeline_id_raw or "").strip()
reason = str(payload.get("reason") or "").strip() or None
candidate = PipelineRecommendation(primary_id=pipeline_id or None, primary_reason=reason)
return self._validate_pipeline_selection(candidate, available_specs, context)
def _extract_entry(entry_key: str) -> tuple[str | None, str | None]:
value = payload.get(entry_key)
if not isinstance(value, dict):
return None, None
pipeline_id_raw = value.get("id") or value.get("pipeline_id") or value.get("pipeline")
pipeline_id = str(pipeline_id_raw).strip()
if not pipeline_id:
return None, None
if not get_pipeline_spec(pipeline_id):
return None, None
reason = str(value.get("reason") or "").strip() or None
return pipeline_id, reason
primary_id, primary_reason = _extract_entry("primary")
fallback_id, fallback_reason = _extract_entry("fallback")
rec = PipelineRecommendation(
primary_id=primary_id,
primary_reason=primary_reason,
fallback_id=fallback_id,
fallback_reason=fallback_reason,
)
return self._validate_pipeline_selection(rec, available_specs, context)
def _validate_pipeline_selection(
self,
candidate: PipelineRecommendation | None,
available_specs: List[Dict[str, object]],
context: MissionContext,
) -> PipelineRecommendation | None:
if not available_specs:
return None
available_ids = {spec["id"] for spec in available_specs}
def _normalize_reason(reason: str | None, default: str) -> str:
text = (reason or "").strip()
return text or default
primary_id = candidate.primary_id if candidate and candidate.primary_id in available_ids else None
if not primary_id:
fallback_spec = fallback_pipeline_for_context(context, available_specs)
if fallback_spec is None:
logging.warning("No pipelines available even after fallback.")
return None
logging.warning(
"Pipeline recommendation invalid or missing. Defaulting to %s.", fallback_spec["id"]
)
return PipelineRecommendation(
primary_id=fallback_spec["id"],
primary_reason=_normalize_reason(
candidate.primary_reason if candidate else None,
"Auto-selected based on available sensors and context.",
),
fallback_id=None,
fallback_reason=None,
)
primary_reason = _normalize_reason(candidate.primary_reason if candidate else None, "LLM-selected.")
fallback_allowed = context.priority_level in {"elevated", "high"}
fallback_id = candidate.fallback_id if candidate else None
fallback_reason = candidate.fallback_reason if candidate else None
if not fallback_allowed or fallback_id not in available_ids or fallback_id == primary_id:
if fallback_id:
logging.info("Dropping fallback pipeline %s due to priority/context constraints.", fallback_id)
fallback_id_valid = None
fallback_reason_valid = None
else:
fallback_id_valid = fallback_id
fallback_reason_valid = _normalize_reason(fallback_reason, "Fallback allowed due to priority level.")
return PipelineRecommendation(
primary_id=primary_id,
primary_reason=primary_reason,
fallback_id=fallback_id_valid,
fallback_reason=fallback_reason_valid,
)
_REASONER: MissionReasoner | None = None
def get_mission_plan(
mission: str,
*,
latitude: float | None = None,
longitude: float | None = None,
context_overrides: MissionContext | None = None,
) -> MissionPlan:
global _REASONER
if _REASONER is None:
_REASONER = MissionReasoner()
context = context_overrides or MissionContext()
cues = build_prompt_hints(mission, latitude, longitude)
if latitude is not None and longitude is not None:
logging.info("Mission location coordinates: lat=%s, lon=%s", latitude, longitude)
local_time_hint = cues.get("local_time") if isinstance(cues, Mapping) else None
if local_time_hint:
logging.info("Derived local mission time: %s", local_time_hint)
timezone_hint = cues.get("timezone") if isinstance(cues, Mapping) else None
if timezone_hint:
logging.info("Derived local timezone: %s", timezone_hint)
locality_hint = cues.get("nearest_locality") if isinstance(cues, Mapping) else None
if locality_hint:
logging.info("Reverse geocoded locality: %s", locality_hint)
inferred_time = _infer_time_of_day_from_cues(context, cues)
if inferred_time and context.time_of_day != inferred_time:
context = replace(context, time_of_day=inferred_time)
return _REASONER.plan(mission, context=context, cues=cues)
def _infer_time_of_day_from_cues(context: MissionContext, cues: Mapping[str, Any] | None) -> str | None:
if context.time_of_day or not cues:
return context.time_of_day
local_time_raw = cues.get("local_time") if isinstance(cues, Mapping) else None
if not local_time_raw:
return None
try:
local_dt = datetime.fromisoformat(str(local_time_raw))
except (ValueError, TypeError):
return None
hour = local_dt.hour
return "day" if 6 <= hour < 18 else "night"
|