Spaces:
Running
on
Zero
Running
on
Zero
File size: 53,643 Bytes
c63bb82 55045a6 c6c0d90 55045a6 c63bb82 55045a6 c63bb82 55045a6 c63bb82 55045a6 ec7fc1c c63bb82 6d65f3f c6c0d90 55045a6 6d65f3f c63bb82 c6c0d90 55045a6 c63bb82 55045a6 c63bb82 55045a6 4c985dd 3d29507 c63bb82 55045a6 c63bb82 55045a6 c63bb82 ec7fc1c c63bb82 55045a6 c63bb82 55045a6 c63bb82 55045a6 c63bb82 55045a6 c63bb82 55045a6 c63bb82 55045a6 c63bb82 55045a6 c63bb82 55045a6 c63bb82 55045a6 c63bb82 55045a6 c63bb82 55045a6 c63bb82 55045a6 c63bb82 55045a6 c63bb82 55045a6 c63bb82 55045a6 3d29507 55045a6 c63bb82 55045a6 c63bb82 55045a6 c63bb82 dc51fb0 c63bb82 dc51fb0 c63bb82 9db1e37 c63bb82 9db1e37 f325bb3 dc51fb0 9db1e37 dc51fb0 9db1e37 dc51fb0 c63bb82 9db1e37 c63bb82 9db1e37 c63bb82 9db1e37 dc51fb0 c63bb82 9db1e37 c63bb82 dc51fb0 c63bb82 dc51fb0 c63bb82 55045a6 c63bb82 55045a6 c63bb82 55045a6 c63bb82 55045a6 c63bb82 55045a6 c63bb82 55045a6 c63bb82 55045a6 c63bb82 d85d301 c63bb82 d85d301 c63bb82 3d29507 c63bb82 55045a6 c63bb82 55045a6 c63bb82 55045a6 c63bb82 55045a6 c63bb82 55045a6 c63bb82 55045a6 c63bb82 55045a6 bea56e8 c63bb82 55045a6 c63bb82 bea56e8 55045a6 f51e2c4 3dfa903 55045a6 f325bb3 55045a6 f325bb3 55045a6 9db1e37 55045a6 9db1e37 55045a6 f325bb3 55045a6 9db1e37 55045a6 9db1e37 55045a6 a8386cc 55045a6 c63bb82 55045a6 dc51fb0 55045a6 c63bb82 55045a6 c63bb82 55045a6 c63bb82 55045a6 c63bb82 55045a6 c63bb82 55045a6 bea56e8 55045a6 4c985dd c63bb82 0d28f6f f7a4cfb c63bb82 f55e007 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 |
"""
Pro AI Headshot Generator - Public Access Version
Transforms any selfie into professional headshots using AI.
"""
import cv2
import torch
import random
import numpy as np
import os
import time
import glob
from pathlib import Path
from typing import Tuple, Optional
from datetime import datetime, timedelta
try:
import spaces
SPACES_AVAILABLE = True
except ImportError:
SPACES_AVAILABLE = False
# Create a dummy decorator for local development
class spaces:
@staticmethod
def GPU(func):
return func
import PIL
from PIL import Image
import diffusers
from diffusers.utils import load_image
from diffusers.models import ControlNetModel
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from huggingface_hub import hf_hub_download
from insightface.app import FaceAnalysis
from style_template import styles
from pipeline_stable_diffusion_xl_instantid_full import (
StableDiffusionXLInstantIDPipeline,
draw_kps,
)
import gradio as gr
import json
import sys
import gc
import os
# Ensure the current directory and parent directory are in Python path (for Hugging Face Spaces)
current_dir = os.path.dirname(os.path.abspath(__file__))
parent_dir = os.path.dirname(current_dir)
for dir_path in [current_dir, parent_dir]:
if dir_path not in sys.path:
sys.path.insert(0, dir_path)
from depth_anything.dpt import DepthAnything
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
import torch.nn.functional as F
from torchvision.transforms import Compose
# Try to import config, with fallback values if it fails
try:
from config import (
TEMP_DIR,
MAX_FILE_AGE_HOURS,
MAX_IMAGE_SIZE_MB,
ALLOWED_IMAGE_FORMATS,
MIN_IMAGE_DIMENSION,
MAX_IMAGE_DIMENSION,
MAX_PROMPT_LENGTH,
MAX_NEGATIVE_PROMPT_LENGTH,
DEFAULT_NUM_STEPS,
DEFAULT_GUIDANCE_SCALE,
DEFAULT_SEED,
)
except ImportError:
# Fallback configuration if config.py is not found
from pathlib import Path
TEMP_DIR = Path(os.getenv("TEMP_DIR", "temp_downloads"))
TEMP_DIR.mkdir(exist_ok=True, parents=True)
MAX_FILE_AGE_HOURS = int(os.getenv("MAX_FILE_AGE_HOURS", "24"))
MAX_IMAGE_SIZE_MB = int(os.getenv("MAX_IMAGE_SIZE_MB", "10"))
ALLOWED_IMAGE_FORMATS = {".jpg", ".jpeg", ".png", ".webp"}
MIN_IMAGE_DIMENSION = 128
MAX_IMAGE_DIMENSION = 4096
DEFAULT_NUM_STEPS = int(os.getenv("DEFAULT_NUM_STEPS", "30"))
DEFAULT_GUIDANCE_SCALE = float(os.getenv("DEFAULT_GUIDANCE_SCALE", "5.0"))
DEFAULT_SEED = int(os.getenv("DEFAULT_SEED", "42"))
MAX_PROMPT_LENGTH = int(os.getenv("MAX_PROMPT_LENGTH", "500"))
MAX_NEGATIVE_PROMPT_LENGTH = int(os.getenv("MAX_NEGATIVE_PROMPT_LENGTH", "500"))
print("⚠ Warning: config.py not found, using default configuration values")
# ============ GLOBAL CONFIG ============
MAX_SEED = np.iinfo(np.int32).max
# Device detection - fixed logic
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
STYLE_NAMES = list(styles.keys())
# ============ ZEROGPU HELPER FUNCTIONS ============
def serialize_for_zerogpu(obj):
"""
Serialize objects for ZeroGPU return values.
Converts numpy arrays, pandas DataFrames, and other non-serializable objects
to JSON-serializable formats.
"""
try:
import pandas as pd
HAS_PANDAS = True
except ImportError:
HAS_PANDAS = False
if isinstance(obj, np.ndarray):
return obj.tolist()
elif isinstance(obj, (np.integer, np.floating)):
return float(obj)
elif isinstance(obj, (np.bool_)):
return bool(obj)
elif HAS_PANDAS and isinstance(obj, pd.DataFrame):
# Convert DataFrame to dict with limited rows to avoid large returns
max_rows = 1000 # Limit to prevent large returns
df_limited = obj.head(max_rows) if len(obj) > max_rows else obj
return {
'data': df_limited.to_dict('records'),
'columns': df_limited.columns.tolist(),
'total_rows': len(obj),
'limited': len(obj) > max_rows
}
elif HAS_PANDAS and isinstance(obj, pd.Series):
return obj.tolist()
elif isinstance(obj, dict):
return {k: serialize_for_zerogpu(v) for k, v in obj.items()}
elif isinstance(obj, (list, tuple)):
return [serialize_for_zerogpu(item) for item in obj]
elif isinstance(obj, (str, int, float, bool, type(None))):
return obj
else:
# Try to convert to string as fallback
try:
return str(obj)
except:
return None
def safe_zerogpu_return(*args, **kwargs):
"""
Wrapper to safely return values from ZeroGPU functions.
Ensures all return values are serializable and not too large.
"""
results = []
if args:
if len(args) == 1:
results = serialize_for_zerogpu(args[0])
else:
results = [serialize_for_zerogpu(arg) for arg in args]
# Clean up GPU memory before returning
if device == "cuda":
try:
torch.cuda.empty_cache()
except:
pass
gc.collect()
return results
# ============ FILE MANAGEMENT ============
def cleanup_old_files():
"""Remove files older than MAX_FILE_AGE_HOURS from temp directory."""
if not TEMP_DIR.exists():
return
cutoff_time = time.time() - (MAX_FILE_AGE_HOURS * 3600)
deleted_count = 0
for file_path in TEMP_DIR.glob("*"):
if file_path.is_file():
try:
if file_path.stat().st_mtime < cutoff_time:
file_path.unlink()
deleted_count += 1
except Exception as e:
print(f"Warning: Could not delete {file_path}: {e}")
if deleted_count > 0:
print(f"Cleaned up {deleted_count} old files from temp directory")
def save_as_png(image: Image.Image, filename: str = "professional_headshot") -> str:
"""Save image as PNG in temp directory with cleanup."""
# Cleanup old files before saving new ones
cleanup_old_files()
TEMP_DIR.mkdir(exist_ok=True, parents=True)
timestamp = int(time.time())
filepath = TEMP_DIR / f"{filename}_{timestamp}.png"
# Ensure image is in RGB mode
if image.mode in ("RGBA", "LA"):
background = Image.new("RGB", image.size, (255, 255, 255))
background.paste(image, mask=image.split()[-1])
image = background
elif image.mode != "RGB":
image = image.convert("RGB")
image.save(filepath, "PNG", optimize=True)
return str(filepath)
# ============ INPUT VALIDATION ============
def validate_image_file(file_path: str) -> Tuple[bool, Optional[str]]:
"""Validate uploaded image file."""
if not file_path:
return False, "Please upload an image file."
# Check file exists
if not os.path.exists(file_path):
return False, "Uploaded file not found. Please try again."
# Check file extension
ext = Path(file_path).suffix.lower()
if ext not in ALLOWED_IMAGE_FORMATS:
return False, f"Unsupported file format. Allowed formats: {', '.join(ALLOWED_IMAGE_FORMATS)}"
# Check file size
file_size_mb = os.path.getsize(file_path) / (1024 * 1024)
if file_size_mb > MAX_IMAGE_SIZE_MB:
return False, f"File too large. Maximum size: {MAX_IMAGE_SIZE_MB}MB"
# Try to open and validate image
try:
with Image.open(file_path) as img:
width, height = img.size
if width < MIN_IMAGE_DIMENSION or height < MIN_IMAGE_DIMENSION:
return False, f"Image too small. Minimum size: {MIN_IMAGE_DIMENSION}x{MIN_IMAGE_DIMENSION}px"
if width > MAX_IMAGE_DIMENSION or height > MAX_IMAGE_DIMENSION:
return False, f"Image too large. Maximum size: {MAX_IMAGE_DIMENSION}x{MAX_IMAGE_DIMENSION}px"
except Exception as e:
return False, f"Invalid image file: {str(e)}"
return True, None
def validate_prompt(prompt: str) -> Tuple[bool, Optional[str]]:
"""Validate prompt input."""
if not prompt or not prompt.strip():
return True, None # Empty prompt is allowed (will use default)
if len(prompt) > MAX_PROMPT_LENGTH:
return False, f"Prompt too long. Maximum length: {MAX_PROMPT_LENGTH} characters"
return True, None
def validate_negative_prompt(negative_prompt: str) -> Tuple[bool, Optional[str]]:
"""Validate negative prompt input."""
if not negative_prompt:
return True, None
if len(negative_prompt) > MAX_NEGATIVE_PROMPT_LENGTH:
return False, f"Negative prompt too long. Maximum length: {MAX_NEGATIVE_PROMPT_LENGTH} characters"
return True, None
# ============ MODEL LOADING ============
print("Loading AI models... This may take a few minutes on first run.")
print("=" * 60)
def check_file_exists(local_path):
"""Check if a file exists locally."""
return Path(local_path).exists()
try:
# InstantID checkpoints - only download if missing
print("Checking InstantID checkpoints...")
checkpoint_dir = Path("./checkpoints/ControlNetModel")
config_path = checkpoint_dir / "config.json"
model_path = checkpoint_dir / "diffusion_pytorch_model.safetensors"
adapter_path = Path("./checkpoints/ip-adapter.bin")
if not config_path.exists():
print(" Downloading config.json...")
hf_hub_download(
repo_id="InstantX/InstantID",
filename="ControlNetModel/config.json",
local_dir="./checkpoints",
)
print(" ✓ config.json downloaded")
else:
print(" ✓ config.json already exists")
if not model_path.exists():
print(" Downloading diffusion_pytorch_model.safetensors (this may take a while)...")
hf_hub_download(
repo_id="InstantX/InstantID",
filename="ControlNetModel/diffusion_pytorch_model.safetensors",
local_dir="./checkpoints",
)
print(" ✓ diffusion_pytorch_model.safetensors downloaded")
else:
print(" ✓ diffusion_pytorch_model.safetensors already exists")
if not adapter_path.exists():
print(" Downloading ip-adapter.bin...")
hf_hub_download(
repo_id="InstantX/InstantID",
filename="ip-adapter.bin",
local_dir="./checkpoints"
)
print(" ✓ ip-adapter.bin downloaded")
else:
print(" ✓ ip-adapter.bin already exists")
print("✓ InstantID checkpoints ready")
except Exception as e:
print(f"⚠ Warning: Error downloading InstantID checkpoints: {e}")
print(" The app will attempt to use cached models if available.")
import traceback
traceback.print_exc()
try:
# Face encoder
print("\nLoading face recognition model...")
models_dir = Path("./models/antelopev2")
if not models_dir.exists():
print(" Warning: Face models directory not found. Models will be downloaded automatically.")
app = FaceAnalysis(
name="antelopev2",
root="./",
providers=["CPUExecutionProvider"],
)
app.prepare(ctx_id=0, det_size=(640, 640))
print("✓ Face recognition model loaded")
except Exception as e:
print(f"✗ Error loading face recognition model: {e}")
import traceback
traceback.print_exc()
raise RuntimeError("Failed to load face recognition model. Please ensure models are downloaded correctly.")
try:
# DepthAnything
print("\nLoading depth estimation model...")
print(" This may take a few minutes on first run (downloading ~1.5GB)...")
depth_anything = DepthAnything.from_pretrained(
"LiheYoung/depth_anything_vitl14"
).to(device).eval()
print("✓ Depth estimation model loaded")
except Exception as e:
print(f"✗ Error loading depth estimation model: {e}")
import traceback
traceback.print_exc()
raise RuntimeError("Failed to load depth estimation model. Please check your internet connection and try again.")
transform = Compose(
[
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
]
)
face_adapter = "./checkpoints/ip-adapter.bin"
controlnet_path = "./checkpoints/ControlNetModel"
try:
print("\nLoading ControlNet models...")
print(" Loading Identity ControlNet...")
controlnet_identitynet = ControlNetModel.from_pretrained(
controlnet_path, torch_dtype=dtype
)
print(" ✓ Identity ControlNet loaded")
controlnet_canny_model = "diffusers/controlnet-canny-sdxl-1.0"
controlnet_depth_model = "diffusers/controlnet-depth-sdxl-1.0-small"
print(" Loading Canny ControlNet (this may take a while)...")
controlnet_canny = ControlNetModel.from_pretrained(
controlnet_canny_model, torch_dtype=dtype
).to(device)
print(" ✓ Canny ControlNet loaded")
print(" Loading Depth ControlNet (this may take a while)...")
controlnet_depth = ControlNetModel.from_pretrained(
controlnet_depth_model, torch_dtype=dtype
).to(device)
print(" ✓ Depth ControlNet loaded")
print("✓ All ControlNet models loaded")
except Exception as e:
print(f"✗ Error loading ControlNet models: {e}")
import traceback
traceback.print_exc()
raise RuntimeError("Failed to load ControlNet models. Please check your internet connection and disk space.")
def get_depth_map(image):
"""Generate depth map from image."""
try:
print(" Processing depth estimation...")
image = np.array(image) / 255.0
h, w = image.shape[:2]
print(f" Input size: {w}x{h}")
print(" Applying transforms...")
image = transform({"image": image})["image"]
image = torch.from_numpy(image).unsqueeze(0).to(device)
print(" Running depth model (this may take a while on CPU)...")
with torch.no_grad():
depth = depth_anything(image)
print(" Post-processing depth map...")
depth = F.interpolate(
depth[None], (h, w), mode="bilinear", align_corners=False
)[0, 0]
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth = depth.cpu().numpy().astype(np.uint8)
depth_image = Image.fromarray(depth)
print(" ✓ Depth map generated")
return depth_image
except Exception as e:
print(f" ✗ Error generating depth map: {e}")
import traceback
traceback.print_exc()
# Return a blank depth map as fallback
return Image.new("L", (512, 512), 128)
def get_canny_image(image, t1=100, t2=200):
"""Generate canny edge map from image."""
try:
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
edges = cv2.Canny(image, t1, t2)
return Image.fromarray(edges, "L")
except Exception as e:
print(f"Warning: Error generating canny edges: {e}")
# Return a blank canny map as fallback
return Image.new("L", (512, 512), 0)
controlnet_map = {
"canny": controlnet_canny,
"depth": controlnet_depth,
}
controlnet_map_fn = {
"canny": get_canny_image,
"depth": get_depth_map,
}
pretrained_model_name_or_path = "wangqixun/YamerMIX_v8"
try:
print("\nLoading Stable Diffusion XL pipeline...")
print(" This is the largest model (~6-7GB) and may take 10-20 minutes on first run...")
print(" Please be patient and ensure you have a stable internet connection.")
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
pretrained_model_name_or_path,
controlnet=[controlnet_identitynet],
torch_dtype=dtype,
safety_checker=None,
feature_extractor=None,
).to(device)
print("✓ Stable Diffusion XL pipeline loaded")
# Standard scheduler
pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(
pipe.scheduler.config
)
print("\nLoading IP-Adapter...")
if device == "cuda":
pipe.cuda()
pipe.load_ip_adapter_instantid(face_adapter)
# Ensure all components are on CUDA
pipe.image_proj_model.to("cuda")
pipe.unet.to("cuda")
# Verify models have data (not meta tensors)
test_param = next(pipe.unet.parameters())
if hasattr(test_param, 'is_meta') and test_param.is_meta:
print(" ⚠ Warning: UNet appears to have meta tensors")
else:
print(f" ✓ UNet verified on device: {test_param.device}")
else:
pipe.load_ip_adapter_instantid(face_adapter)
# Verify CPU models have data
test_param = next(pipe.unet.parameters())
if hasattr(test_param, 'is_meta') and test_param.is_meta:
print(" ⚠ Warning: UNet appears to have meta tensors")
else:
print(f" ✓ UNet verified on device: {test_param.device}")
print("✓ IP-Adapter loaded")
print("\n" + "=" * 60)
print("✅ ALL MODELS LOADED SUCCESSFULLY!")
print("=" * 60)
print("The application is now ready to use.")
except Exception as e:
print(f"\n✗ Error loading Stable Diffusion pipeline: {e}")
import traceback
traceback.print_exc()
raise RuntimeError(f"Failed to load Stable Diffusion pipeline: {e}. Please check your internet connection and disk space.")
# ============ UTILS ============
def toggle_lcm_ui(value: bool) -> Tuple[dict, dict]:
"""Toggle UI for LCM mode."""
if value:
return (
gr.update(minimum=0, maximum=100, step=1, value=5),
gr.update(minimum=0.1, maximum=20.0, step=0.1, value=1.5),
)
else:
return (
gr.update(minimum=5, maximum=100, step=1, value=DEFAULT_NUM_STEPS),
gr.update(minimum=0.1, maximum=20.0, step=0.1, value=DEFAULT_GUIDANCE_SCALE),
)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
"""Randomize seed if requested."""
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def convert_from_cv2_to_image(img: np.ndarray) -> Image.Image:
"""Convert OpenCV image to PIL Image."""
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
def convert_from_image_to_cv2(img: Image.Image) -> np.ndarray:
"""Convert PIL Image to OpenCV format."""
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
def resize_img(
input_image,
max_side=1280,
min_side=1024,
size=None,
pad_to_max_side=False,
mode=PIL.Image.BILINEAR,
base_pixel_number=64,
):
"""Resize image maintaining aspect ratio."""
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio * w), round(ratio * h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new] = (
np.array(input_image)
)
input_image = Image.fromarray(res)
return input_image
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
"""Apply style template to prompts."""
if style_name == "No Style":
return positive, negative
p, n = styles.get(style_name, ("{prompt}", ""))
return p.replace("{prompt}", positive), n + " " + negative
# ============ GENERATION FUNCTION ============
@spaces.GPU # ZeroGPU will allocate GPU for this function (Hugging Face Spaces only)
def generate_image(
face_image_path: str,
prompt: str,
negative_prompt: str,
style_name: str,
num_steps: int,
identitynet_strength_ratio: float,
adapter_strength_ratio: float,
canny_strength: float,
depth_strength: float,
controlnet_selection: list,
guidance_scale: float,
seed: int,
scheduler: str,
enable_LCM: bool,
enhance_face_region: bool,
progress=gr.Progress(track_tqdm=True),
):
"""Generate professional headshot from face image."""
try:
print("\n" + "=" * 60)
print("Starting image generation...")
print("=" * 60)
# Validate inputs
print("Step 1/8: Validating inputs...")
is_valid, error_msg = validate_image_file(face_image_path)
if not is_valid:
raise gr.Error(error_msg)
is_valid, error_msg = validate_prompt(prompt)
if not is_valid:
raise gr.Error(error_msg)
is_valid, error_msg = validate_negative_prompt(negative_prompt)
if not is_valid:
raise gr.Error(error_msg)
print(" ✓ Inputs validated")
# Randomize seed if needed
if seed < 0:
seed = random.randint(0, MAX_SEED)
# Load and process face image
print("Step 2/8: Loading and processing face image...")
face_image = load_image(face_image_path)
face_image = resize_img(face_image, max_side=1024)
face_image_cv2 = convert_from_image_to_cv2(face_image)
height, width, _ = face_image_cv2.shape
print(f" ✓ Image loaded: {width}x{height}")
# Detect face
print("Step 3/8: Detecting face...")
face_info_list = app.get(face_image_cv2)
if len(face_info_list) == 0:
raise gr.Error(
"Unable to detect a face in the image. Please upload a different photo with a clear face."
)
print(f" ✓ Face detected")
# Use largest detected face
print("Step 4/8: Processing face features...")
face_info = sorted(
face_info_list,
key=lambda x: (x["bbox"][2] - x["bbox"][0]) * (x["bbox"][3] - x["bbox"][1]),
)[-1]
# Detect gender from face info if available (for identity preservation)
detected_gender = None
if "gender" in face_info:
detected_gender = face_info["gender"]
print(f" Detected gender: {'Female' if detected_gender == 0 else 'Male' if detected_gender == 1 else 'Unknown'}")
elif hasattr(face_info, "get") and face_info.get("gender") is not None:
detected_gender = face_info.get("gender")
print(f" Detected gender: {'Female' if detected_gender == 0 else 'Male' if detected_gender == 1 else 'Unknown'}")
# Configure scheduler
print("Step 5/8: Configuring scheduler...")
scheduler_class_name = scheduler.split("-")[0]
add_kwargs = {}
if len(scheduler.split("-")) > 1:
add_kwargs["use_karras_sigmas"] = True
if len(scheduler.split("-")) > 2:
add_kwargs["algorithm_type"] = "sde-dpmsolver++"
scheduler_cls = getattr(diffusers, scheduler_class_name)
pipe.scheduler = scheduler_cls.from_config(pipe.scheduler.config, **add_kwargs)
print(f" ✓ Scheduler: {scheduler_class_name}")
# Apply style and process prompts (AFTER face detection so we can use gender info)
if not prompt:
prompt = "a person"
# Add explicit gender to prompt if detected (InstantID works better with explicit gender)
if detected_gender is not None:
prompt_lower = prompt.lower()
# Only add gender if not already in prompt
if "man" not in prompt_lower and "woman" not in prompt_lower and "male" not in prompt_lower and "female" not in prompt_lower and "person" not in prompt_lower:
if detected_gender == 0: # Female
prompt = f"a woman, {prompt}"
print(f" ✓ Added 'a woman' to prompt for gender preservation")
elif detected_gender == 1: # Male
prompt = f"a man, {prompt}"
print(f" ✓ Added 'a man' to prompt for gender preservation")
elif "person" in prompt_lower:
# Replace "person" with specific gender
if detected_gender == 0: # Female
prompt = prompt.replace("person", "woman").replace("Person", "Woman")
print(f" ✓ Replaced 'person' with 'woman' in prompt")
elif detected_gender == 1: # Male
prompt = prompt.replace("person", "man").replace("Person", "Man")
print(f" ✓ Replaced 'person' with 'man' in prompt")
# Warn if prompt contains physical feature descriptions that might override identity
physical_keywords = ["hair", "blonde", "brown hair", "black hair", "red hair", "beard", "mustache",
"wearing", "shirt", "jacket", "suit", "blazer", "tie", "glasses"]
prompt_lower = prompt.lower()
if any(keyword in prompt_lower for keyword in physical_keywords):
print(" ⚠ Warning: Prompt contains physical feature descriptions. These may override face identity.")
print(" 💡 Tip: Focus on style/setting only (e.g., 'professional headshot, studio lighting') for better identity preservation.")
# Add gender preservation to negative prompt if gender was detected
gender_negative_terms = "wrong gender, gender swap, different person, different face, face swap, identity change, different identity"
if detected_gender is not None:
# Add opposite gender terms to negative prompt
if detected_gender == 0: # Female
gender_negative_terms += ", man, male, masculine, boy"
elif detected_gender == 1: # Male
gender_negative_terms += ", woman, female, feminine, girl"
print(f" ✓ Gender preservation enabled in negative prompt")
# Add gender preservation terms to negative prompt
if gender_negative_terms not in negative_prompt:
negative_prompt = f"{negative_prompt}, {gender_negative_terms}" if negative_prompt else gender_negative_terms
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
print(f" ✓ Style applied: {style_name}")
# Extract face embedding and ensure it's a proper tensor
face_emb_raw = face_info["embedding"]
print(f" Face embedding raw type: {type(face_emb_raw)}")
# Convert to torch tensor if it's numpy
if isinstance(face_emb_raw, np.ndarray):
face_emb = torch.from_numpy(face_emb_raw).to(device).to(dtype)
elif isinstance(face_emb_raw, torch.Tensor):
face_emb = face_emb_raw.to(device).to(dtype)
else:
# Fallback: try to convert
face_emb = torch.tensor(face_emb_raw, device=device, dtype=dtype)
# Ensure proper shape for InstantID (should be [1, 512] or [512])
if len(face_emb.shape) == 1:
face_emb = face_emb.unsqueeze(0) # Add batch dimension: [1, 512]
elif len(face_emb.shape) == 2 and face_emb.shape[0] > 1:
# If multiple faces, take the first one
face_emb = face_emb[0:1]
# DO NOT normalize - InstantID expects raw embeddings from InsightFace
# Normalization breaks the identity preservation
print(f" Face embedding final shape: {face_emb.shape}, dtype: {face_emb.dtype}, device: {face_emb.device}")
print(f" Face embedding range: [{face_emb.min().item():.4f}, {face_emb.max().item():.4f}]")
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"])
print(f" Face keypoints image size: {face_kps.size}")
img_controlnet = face_image
print(" ✓ Face features extracted")
import sys
sys.stdout.flush()
# Create control mask if requested
print("Step 5/8: Preparing control images...")
if enhance_face_region:
control_mask = np.zeros([height, width, 3])
x1, y1, x2, y2 = face_info["bbox"]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
control_mask[y1:y2, x1:x2] = 255
control_mask = Image.fromarray(control_mask.astype(np.uint8))
else:
control_mask = None
# Configure ControlNet
print("Step 6/8: Configuring ControlNet...")
if len(controlnet_selection) > 0:
controlnet_scales = {
"canny": canny_strength,
"depth": depth_strength,
}
# Generate control images with progress updates first
control_images = [face_kps]
successful_controls = []
for s in controlnet_selection:
print(f" Generating {s} control image...")
try:
if s == "depth":
# Depth generation can be slow, show progress
print(" (This may take 10-20 seconds on CPU...)")
control_img = controlnet_map_fn[s](img_controlnet).resize((width, height))
control_images.append(control_img)
successful_controls.append(s)
print(f" ✓ {s} control image generated")
except Exception as e:
print(f" ⚠ Warning: Failed to generate {s} control image: {e}")
print(f" Continuing without {s} control...")
# Configure ControlNet based on successful controls
if len(successful_controls) > 0:
pipe.controlnet = MultiControlNetModel(
[controlnet_identitynet]
+ [controlnet_map[s] for s in successful_controls]
)
control_scales = [float(identitynet_strength_ratio)] + [
controlnet_scales[s] for s in successful_controls
]
print(f" ✓ ControlNet configured with: {successful_controls}")
else:
# Fallback to identity only if all controls failed
pipe.controlnet = controlnet_identitynet
control_scales = float(identitynet_strength_ratio)
control_images = face_kps
print(" ✓ ControlNet configured: identity only (control generation failed)")
else:
pipe.controlnet = controlnet_identitynet
control_scales = float(identitynet_strength_ratio)
control_images = face_kps
print(" ✓ ControlNet configured: identity only")
# Adjust steps for LCM if enabled
if enable_LCM:
num_steps = max(5, min(num_steps, 10))
guidance_scale = max(1.0, min(guidance_scale, 2.0))
print(" ✓ Fast generation mode enabled")
generator = torch.Generator(device=device).manual_seed(seed)
print(f" Generator created on {device}, seed: {seed}")
pipe.set_ip_adapter_scale(adapter_strength_ratio)
print(f" IP-Adapter scale set to: {adapter_strength_ratio}")
import sys
sys.stdout.flush()
# Generate image
print("Step 7/8: Generating image (this may take 30-60 seconds)...")
print(f" Steps: {num_steps}, Guidance: {guidance_scale}, Seed: {seed}")
print(f" Device: {device}, Image size: {width}x{height}")
print(f" Control images type: {type(control_images)}, length: {len(control_images) if isinstance(control_images, list) else 'single'}")
print(" Starting diffusion process...")
import sys
sys.stdout.flush() # Force output
# Create callback for progress updates
step_count = [0] # Use list to allow modification in nested function
def progress_callback(step, timestep, latents):
step_count[0] = step + 1
print(f" Progress: Step {step_count[0]}/{num_steps} ({(step_count[0]/num_steps)*100:.1f}%)")
sys.stdout.flush()
if progress:
try:
progress(step / num_steps, desc=f"Generating... {step}/{num_steps}")
except:
pass
print(" Calling pipeline...")
sys.stdout.flush()
try:
# Ensure all inputs are on correct device
print(" Preparing inputs...")
print(f" Prompt length: {len(prompt)} chars")
print(f" Negative prompt length: {len(negative_prompt)} chars")
print(f" Face embedding: shape={face_emb.shape}, dtype={face_emb.dtype}, device={face_emb.device}")
print(f" Face embedding has data: {face_emb.numel() > 0}")
if isinstance(control_images, list):
print(f" Control images: {len(control_images)} images")
for i, img in enumerate(control_images):
print(f" Image {i}: {type(img)}, size: {img.size if hasattr(img, 'size') else 'N/A'}")
else:
print(f" Control image: {type(control_images)}, size: {control_images.size if hasattr(control_images, 'size') else 'N/A'}")
sys.stdout.flush()
# Verify face_emb is not a meta tensor
if hasattr(face_emb, 'is_meta') and face_emb.is_meta:
print(" ✗ ERROR: Face embedding is a meta tensor!")
raise RuntimeError("Face embedding is a meta tensor. This usually means the model wasn't loaded correctly.")
# Ensure face_emb has actual data
if face_emb.numel() == 0:
print(" ✗ ERROR: Face embedding is empty!")
raise RuntimeError("Face embedding is empty. Face detection may have failed.")
# Check if pipeline is ready
print(" Checking pipeline state...")
print(f" Pipeline device: {next(pipe.unet.parameters()).device}")
print(f" Pipeline dtype: {next(pipe.unet.parameters()).dtype}")
sys.stdout.flush()
# Force garbage collection before generation
import gc
if device == "cuda":
torch.cuda.empty_cache()
gc.collect()
print(" Memory cleared, starting generation...")
sys.stdout.flush()
# Call pipeline with explicit error handling
print(" Entering pipeline call (this may take a moment to start)...")
print(" NOTE: First step may take 10-30 seconds for encoding/preprocessing")
sys.stdout.flush()
# Try to enable attention slicing for memory efficiency
try:
if hasattr(pipe, 'enable_attention_slicing'):
pipe.enable_attention_slicing(slice_size="max")
print(" ✓ Attention slicing enabled")
except:
pass
# Try to enable CPU offload if on CPU
if device == "cpu":
try:
if hasattr(pipe, 'enable_sequential_cpu_offload'):
pipe.enable_sequential_cpu_offload()
print(" ✓ Sequential CPU offload enabled")
except:
pass
sys.stdout.flush()
# Add a print right before the actual call
print(" Starting pipeline inference NOW...")
sys.stdout.flush()
# Pass IP-Adapter scale explicitly to ensure it's used
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image_embeds=face_emb,
image=control_images,
control_mask=control_mask,
controlnet_conditioning_scale=control_scales,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
generator=generator,
callback=progress_callback,
callback_steps=1, # Update every step
ip_adapter_scale=adapter_strength_ratio, # Explicitly pass IP-Adapter scale
).images
print(f" ✓ Pipeline completed, generated {len(images)} image(s)")
sys.stdout.flush()
except Exception as pipe_error:
print(f" ✗ Pipeline error: {pipe_error}")
import traceback
traceback.print_exc()
sys.stdout.flush()
raise
final_image = images[0]
print("Step 8/8: Saving image...")
save_as_png(final_image)
print("✓ Image generation complete!")
print("=" * 60)
# Clean up GPU memory before returning (important for ZeroGPU)
if device == "cuda":
try:
torch.cuda.empty_cache()
print(" GPU memory cleared")
except Exception as e:
print(f" Warning: Could not clear GPU cache: {e}")
# Force garbage collection
gc.collect()
# Ensure stdout is flushed before returning (helps with ZeroGPU)
sys.stdout.flush()
return final_image
except gr.Error:
raise
except Exception as e:
print(f"\n✗ Error during generation: {e}")
import traceback
traceback.print_exc()
raise gr.Error(f"An error occurred during generation: {str(e)}")
# ============ CSS STYLING ============
css = """
/* Main container styling */
.main-container {
max-width: 1400px;
margin: 0 auto;
padding: 20px;
}
/* Hero section */
.hero-title {
font-size: 2.5em;
font-weight: 700;
margin-bottom: 10px;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
}
.hero-subtitle {
font-size: 1.1em;
color: #666;
margin-bottom: 30px;
}
/* Control cards */
.control-card {
background: #f8f9fa;
border-radius: 12px;
padding: 20px;
margin-bottom: 20px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.control-header {
display: flex;
align-items: center;
margin-bottom: 15px;
}
.control-icon {
font-size: 1.5em;
margin-right: 10px;
}
.control-title {
font-size: 1.2em;
font-weight: 600;
margin: 0;
}
/* Upload area */
.upload-area {
border: 2px dashed #667eea;
border-radius: 8px;
padding: 20px;
text-align: center;
}
/* Tips card */
.tips-card {
background: #fff3cd;
border-left: 4px solid #ffc107;
border-radius: 8px;
padding: 15px;
margin-bottom: 20px;
}
.tips-header {
display: flex;
align-items: center;
margin-bottom: 10px;
}
.tips-icon {
font-size: 1.3em;
margin-right: 8px;
}
/* Result card */
.result-card {
background: #f8f9fa;
border-radius: 12px;
padding: 20px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.result-header {
margin-bottom: 20px;
}
.result-title {
font-size: 1.5em;
font-weight: 600;
margin-bottom: 5px;
}
.result-subtitle {
color: #666;
font-size: 0.95em;
}
/* Image container */
.image-container {
border-radius: 8px;
overflow: hidden;
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
}
/* Success banner */
.success-banner {
background: #d4edda;
border: 1px solid #c3e6cb;
border-radius: 8px;
padding: 15px;
margin-top: 15px;
}
/* Primary button */
.btn-primary {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
border: none;
font-weight: 600;
padding: 12px 30px;
}
.btn-primary:hover {
opacity: 0.9;
transform: translateY(-1px);
box-shadow: 0 4px 8px rgba(0,0,0,0.2);
}
"""
# ============ UI / GRADIO ============
def show_success():
"""Show success message after generation."""
return gr.update(
value="""
<div class="success-banner">
<h4 style="margin: 0 0 8px 0;">✅ Success! Your Professional Headshot is Ready</h4>
<p style="margin: 0; opacity: 0.9;">Download your high-quality PNG file for LinkedIn, professional profiles, or portfolios.</p>
</div>
""",
)
with gr.Blocks() as demo:
# Add custom CSS via HTML component (compatible with Gradio 4.44.0+)
gr.HTML(f"<style>{css}</style>")
with gr.Column(elem_classes="main-container"):
with gr.Column(elem_classes="hero-section"):
gr.HTML(
"""
<div style="position: relative; z-index: 2;">
<h1 class="hero-title">🎯 Pro AI Headshot Generator</h1>
<p class="hero-subtitle">Transform any selfie into professional headshots in seconds. Perfect for LinkedIn, corporate profiles, and professional portfolios.</p>
</div>
"""
)
with gr.Row(equal_height=True):
with gr.Column(scale=1, min_width=400):
with gr.Column(elem_classes="control-card"):
gr.HTML(
"""
<div class="control-header">
<div class="control-icon">📸</div>
<h3 class="control-title">Upload Your Photo</h3>
</div>
"""
)
gr.HTML(
"""
<p style="color: var(--text-secondary); margin-bottom: 20px; font-size: 0.95em;">
For best results, use a clear, well-lit photo where your face is clearly visible.
</p>
"""
)
face_file = gr.Image(
label="",
type="filepath",
height=200,
show_label=False,
elem_classes="upload-area",
)
with gr.Column(elem_classes="control-card"):
gr.HTML(
"""
<div class="control-header">
<div class="control-icon">✍️</div>
<h3 class="control-title">Describe Your Look</h3>
</div>
"""
)
prompt = gr.Textbox(
label="",
placeholder="Describe the style and setting (avoid describing physical features)...",
value="professional headshot, business portrait, soft natural lighting, high quality",
show_label=False,
lines=3,
)
gr.HTML(
"""
<div style="font-size: 0.85em; color: var(--text-secondary); margin-top: 8px;">
💡 Tips: Describe style/setting only. Don't mention hair color, clothing, or physical features - your face will be preserved automatically.
<br>Examples: "professional business headshot", "corporate portrait", "studio lighting"
</div>
"""
)
with gr.Column(elem_classes="control-card"):
gr.HTML(
"""
<div class="control-header">
<div class="control-icon">🎨</div>
<h3 class="control-title">Style Options</h3>
</div>
"""
)
style = gr.Dropdown(
label="Style Theme",
choices=["No Style"] + STYLE_NAMES,
value="No Style",
info="'No Style' recommended for natural professional results",
)
with gr.Column(elem_classes="control-card"):
gr.HTML(
"""
<div class="control-header">
<div class="control-icon">⚙️</div>
<h3 class="control-title">Quality Settings</h3>
</div>
"""
)
identitynet_strength_ratio = gr.Slider(
label="Face Similarity",
minimum=0.5,
maximum=1.5,
step=0.05,
value=1.2,
info="How closely the headshot resembles your photo (higher = more similar, recommended: 1.0-1.2)",
)
adapter_strength_ratio = gr.Slider(
label="Face Detail Strength",
minimum=0.3,
maximum=1.5,
step=0.05,
value=1.0,
info="Strength of face features preservation (higher = better identity match, recommended: 0.8-1.0)",
)
enable_LCM = gr.Checkbox(
label="Enable Fast Generation Mode",
value=False,
info="Faster results with slightly lower quality",
)
with gr.Column(elem_classes="tips-card"):
gr.HTML(
"""
<div class="tips-header">
<div class="tips-icon">💡</div>
<h4 style="margin: 0; color: #92400e;">Pro Tips for Best Results</h4>
</div>
<ul style="margin: 0; color: #92400e; font-size: 0.9em;">
<li>Use clear, well-lit face photos</li>
<li>Face should be visible and not too small</li>
<li>Avoid blurry or dark images</li>
<li>Single person in photo works best</li>
</ul>
"""
)
submit = gr.Button(
"✨ Generate Professional Headshot",
variant="primary",
size="lg",
elem_classes="btn-primary",
scale=1,
)
with gr.Column(scale=1, min_width=500):
with gr.Column(elem_classes="result-card"):
gr.HTML(
"""
<div class="result-header">
<h2 class="result-title">Your Professional Headshot</h2>
<p class="result-subtitle">Your AI-generated headshot will appear here. Download as high-quality PNG for professional use.</p>
</div>
"""
)
gallery = gr.Image(
label="Output",
height=400,
show_label=False,
type="pil",
elem_classes="image-container",
)
success_msg = gr.HTML(
"""
<div class="success-banner" style="display: none;">
<h4 style="margin: 0 0 8px 0;">✅ Success! Your Professional Headshot is Ready</h4>
<p style="margin: 0; opacity: 0.9;">Download your high-quality PNG file for LinkedIn, professional profiles, or portfolios.</p>
</div>
"""
)
progress_info = gr.HTML(
"""
<div class="progress-container">
<div style="font-size: 0.9em; color: var(--text-secondary);">
⏱️ Generation takes 20-30 seconds
</div>
</div>
"""
)
# Hidden advanced settings
negative_prompt = gr.Textbox(
value="(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green, wrong gender, gender swap, different person, different face, face swap, identity change, different identity",
visible=False,
)
num_steps = gr.Slider(
minimum=5,
maximum=100,
step=1,
value=DEFAULT_NUM_STEPS,
label="Number of steps",
visible=False,
)
guidance_scale = gr.Slider(
minimum=0.1,
maximum=20.0,
step=0.1,
value=DEFAULT_GUIDANCE_SCALE,
label="Guidance scale",
visible=False,
)
seed = gr.Slider(
minimum=-1,
maximum=MAX_SEED,
step=1,
value=-1,
label="Seed (-1 for random)",
visible=False,
)
scheduler = gr.Dropdown(
value="EulerDiscreteScheduler",
choices=[
"EulerDiscreteScheduler",
"EulerAncestralDiscreteScheduler",
"DPMSolverMultistepScheduler",
],
visible=False,
)
randomize_seed = gr.Checkbox(value=True, visible=False)
enhance_face_region = gr.Checkbox(value=True, visible=False)
controlnet_selection = gr.CheckboxGroup(
choices=["canny", "depth"], value=[], label="Controlnet", visible=False # Changed default to empty - depth can be slow
)
canny_strength = gr.Slider(
minimum=0,
maximum=1.5,
step=0.01,
value=0.4,
label="Canny strength",
visible=False,
)
depth_strength = gr.Slider(
minimum=0,
maximum=1.5,
step=0.01,
value=0.4,
label="Depth strength",
visible=False,
)
submit.click(
fn=generate_image,
inputs=[
face_file,
prompt,
negative_prompt,
style,
num_steps,
identitynet_strength_ratio,
adapter_strength_ratio,
canny_strength,
depth_strength,
controlnet_selection,
guidance_scale,
seed,
scheduler,
enable_LCM,
enhance_face_region,
],
outputs=[gallery],
).then(fn=show_success, outputs=success_msg)
enable_LCM.input(
fn=toggle_lcm_ui,
inputs=[enable_LCM],
outputs=[num_steps, guidance_scale],
queue=False,
)
# Cleanup on startup
cleanup_old_files()
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Pro AI Headshot Generator")
parser.add_argument("--share", action="store_true", help="Create a public Gradio link")
parser.add_argument("--server-name", type=str, default="127.0.0.1", help="Server name (default: 127.0.0.1)")
parser.add_argument("--server-port", type=int, default=7860, help="Server port (default: 7860)")
parser.add_argument("--no-queue", action="store_true", help="Disable queueing")
args = parser.parse_args()
demo.queue(api_open=False, max_size=3 if not args.no_queue else None)
# Launch the application
try:
print("\n" + "=" * 60)
print("🚀 Launching Gradio interface...")
print("=" * 60)
# For Hugging Face Spaces, use 0.0.0.0 to allow external access
server_name = "0.0.0.0" if os.getenv("SPACE_ID") else args.server_name
print(f" Server: {server_name}:{args.server_port}")
print(f" Queue enabled: {not args.no_queue}")
print(" Interface should be available shortly...")
print("=" * 60)
demo.launch(
share=args.share,
server_name=server_name,
server_port=args.server_port,
show_error=True,
# Note: theme parameter removed for Gradio 4.44.0+ compatibility
# CSS is injected via HTML component instead
)
print("\n✅ Gradio interface launched successfully!")
except Exception as e:
print(f"\n✗ Error launching Gradio interface: {e}")
import traceback
traceback.print_exc()
raise
|