Spaces:
Sleeping
Sleeping
File size: 14,913 Bytes
199c8cd 3cb25e1 199c8cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
# ------------------------------------------------------------------------------
# OptVQ: Preventing Local Pitfalls in Vector Quantization via Optimal Transport
# Copyright (c) 2024 Borui Zhang. All Rights Reserved.
# Licensed under the MIT License [see LICENSE for details]
# ------------------------------------------------------------------------------
from typing import Callable
import argparse
import os
from omegaconf import OmegaConf
from functools import partial
from torchinfo import summary
import torch
import torch.nn as nn
from torch.utils.data.dataloader import DataLoader
from revq.utils.init import initiate_from_config_recursively
from revq.data.dataloader import maybe_get_subset
import revq.utils.logger as L
def setup_config(opt: argparse.Namespace):
L.log.info("\n\n### Setting up the configurations. ###")
# load the config files
config = OmegaConf.load(opt.config)
# overwrite the certain arguments according to the config.args mapping
for key, value in config.args_map.items():
if hasattr(opt, key) and getattr(opt, key) is not None:
msg = f"config.{value} = opt.{key}"
L.log.info(f"Overwrite the config: {msg}")
exec(msg)
return config
def setup_dataloader(data, batch_size, is_distributed: bool = True, is_train: bool = True, num_workers: int = 8):
if is_train:
if is_distributed:
# setup the sampler
sampler = torch.utils.data.distributed.DistributedSampler(data, shuffle=True, drop_last=True)
# setup the dataloader
loader = DataLoader(
dataset=data, batch_size=batch_size, num_workers=num_workers,
drop_last=True, sampler=sampler, persistent_workers=True, pin_memory=True
)
else:
# setup the dataloader
loader = DataLoader(
dataset=data, batch_size=batch_size, num_workers=num_workers,
drop_last=True, shuffle=True, persistent_workers=True, pin_memory=True
)
else:
if is_distributed:
# setup the sampler
sampler = torch.utils.data.distributed.DistributedSampler(data, shuffle=False, drop_last=False)
# setup the dataloader
loader = DataLoader(
dataset=data, batch_size=batch_size, num_workers=num_workers,
drop_last=False, sampler=sampler, persistent_workers=True, pin_memory=True
)
else:
# setup the dataloader
loader = DataLoader(
dataset=data, batch_size=batch_size, num_workers=num_workers,
drop_last=False, shuffle=False, persistent_workers=True, pin_memory=True
)
return loader
def setup_dataset(config: OmegaConf):
L.log.info("\n\n### Setting up the datasets. ###")
# setup the training dataset
train_data = initiate_from_config_recursively(config.data.train)
if config.data.use_train_subset is not None:
train_data = maybe_get_subset(train_data, subset_size=config.data.use_train_subset, num_data_repeat=config.data.use_train_repeat)
L.log.info(f"Training dataset size: {len(train_data)}")
# setup the validation dataset
val_data = initiate_from_config_recursively(config.data.val)
if config.data.use_val_subset is not None:
val_data = maybe_get_subset(val_data, subset_size=config.data.use_val_subset)
L.log.info(f"Validation dataset size: {len(val_data)}")
return train_data, val_data
def setup_model(config: OmegaConf, device):
L.log.info("\n\n### Setting up the models. ###")
# setup the model
model = initiate_from_config_recursively(config.model.autoencoder)
if config.is_distributed:
# apply syncBN
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
# model to devices
model = model.to(device)
find_unused_parameters = True
model = torch.nn.parallel.DistributedDataParallel(
module=model, device_ids=[config.gpu],
find_unused_parameters=find_unused_parameters
)
model_ori = model.module
else:
model = model.to(device)
model_ori = model
input_size = config.data.train.params.transform.params.resize
in_channels = getattr(model_ori.encoder, "in_dim", 3)
sout = summary(model_ori, (1, in_channels, input_size, input_size), device="cuda", verbose=0)
L.log.info(sout)
# count the total number of parameters
for name, module in model_ori.named_children():
num_params = sum(p.numel() for p in module.parameters())
num_trainable = sum(p.numel() for p in module.parameters() if p.requires_grad)
L.log.info(f"Module: {name}, Total params: {num_params}, Trainable params: {num_trainable}")
return model
### factory functions
def get_setup_optimizers(config):
name = config.train.pipeline
func_name = "setup_optimizers_" + name
return globals()[func_name]
def get_pipeline(config):
name = config.train.pipeline
func_name = "pipeline_" + name
return globals()[func_name]
def _forward_backward(
config,
x: torch.Tensor,
forward: Callable,
model: nn.Module,
optimizer: torch.optim.Optimizer,
scheduler: torch.optim.lr_scheduler._LRScheduler,
scaler: torch.cuda.amp.GradScaler,
):
with torch.autocast(device_type="cuda", dtype=torch.bfloat16,
enabled=config.use_amp):
# forward pass
loss, *output = forward(x)
loss_acc = loss / config.data.gradient_accumulate
scaler.scale(loss_acc).backward()
# gradient accumulate
if L.log.total_steps % config.data.gradient_accumulate == 0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
scaler.step(optimizer)
optimizer.zero_grad()
scaler.update()
if scheduler is not None:
scheduler.step()
return loss, output
### autoencoder version
def _find_weight_decay_id(modules: list, params_ids: list,
include_class: tuple = (nn.Linear, nn.Conv2d,
nn.ConvTranspose2d,
nn.MultiheadAttention),
include_name: list = ["weight"]):
for mod in modules:
for sub_mod in mod.modules():
if isinstance(sub_mod, include_class):
for name, param in sub_mod.named_parameters():
if any([k in name for k in include_name]):
params_ids.append(id(param))
params_ids = list(set(params_ids))
return params_ids
def set_weight_decay(modules: list):
weight_decay_ids = _find_weight_decay_id(modules, [])
wd_params, wd_names, no_wd_params, no_wd_names = [], [], [], []
for mod in modules:
for name, param in mod.named_parameters():
if id(param) in weight_decay_ids:
wd_params.append(param)
wd_names.append(name)
else:
no_wd_params.append(param)
no_wd_names.append(name)
return wd_params, wd_names, no_wd_params, no_wd_names
def setup_optimizers_ae(config: OmegaConf, model: nn.Module, total_steps: int):
L.log.info("\n\n### Setting up the optimizers and schedulers. ###")
# compute the total batch size and the learning rate
total_batch_size = config.data.batch_size * config.world_size * config.data.gradient_accumulate
total_learning_rate = config.train.learning_rate * total_batch_size
multipled_learning_rate = total_learning_rate * config.train.mul_learning_rate
L.log.info(f"Total batch size: {total_batch_size} = {config.data.batch_size} * {config.world_size} * {config.data.gradient_accumulate}")
L.log.info(f"Total learning rate: {total_learning_rate} = {config.train.learning_rate} * {total_batch_size}")
L.log.info(f"Multipled learning rate: {multipled_learning_rate} = {total_learning_rate} * {config.train.mul_learning_rate}")
# setup the optimizers
param_group = []
## base learning rate
wd_params, wd_names, no_wd_params, no_wd_names = set_weight_decay([model.encoder, model.decoder, model.quant_conv, model.post_quant_conv])
param_group.append({
"params": wd_params, "lr": total_learning_rate, "eps": 1e-7,
"weight_decay": config.train.weight_decay, "beta": (0.9, 0.999),
})
param_group.append({
"params": no_wd_params, "lr": total_learning_rate, "eps": 1e-7,
"weight_decay": 0.0, "beta": (0.9, 0.999),
})
## multipled learning rate
wd_params, wd_names, no_wd_params, no_wd_names = set_weight_decay([model.quantize])
param_group.append({
"params": wd_params, "lr": multipled_learning_rate, "eps": 1e-7,
"weight_decay": config.train.weight_decay, "beta": (0.9, 0.999),
})
param_group.append({
"params": no_wd_params, "lr": multipled_learning_rate, "eps": 1e-7,
"weight_decay": 0.0, "beta": (0.9, 0.999),
})
optimizer_ae = torch.optim.AdamW(param_group)
optimizer_dict = {"optimizer_ae": optimizer_ae}
# setup the schedulers
scheduler_ae = torch.optim.lr_scheduler.OneCycleLR(
optimizer=optimizer_ae, max_lr=[total_learning_rate, total_learning_rate, multipled_learning_rate, multipled_learning_rate],
total_steps=total_steps, pct_start=0.01, anneal_strategy="cos"
)
scheduler_dict = {"scheduler_ae": scheduler_ae}
# setup the scalers
scaler_dict = {"scaler_ae": torch.GradScaler(enabled=config.use_amp)}
L.log.info(f"Enable AMP: {config.use_amp}")
return optimizer_dict, scheduler_dict, scaler_dict
def pipeline_ae(
config,
x: torch.Tensor,
model: nn.Module,
optimizers: dict,
schedulers: dict,
scalers: dict,
):
assert "optimizer_ae" in optimizers
assert "scheduler_ae" in schedulers
assert "scaler_ae" in scalers
optimizer = optimizers["optimizer_ae"]
scheduler = schedulers["scheduler_ae"]
scaler = scalers["scaler_ae"]
forward = partial(model, mode=0)
_, (loss_ae_dict, indices) = _forward_backward(config, x, forward, model, optimizer, scheduler, scaler)
log_per_step = loss_ae_dict
log_per_epoch = {"indices": indices}
return log_per_step, log_per_epoch
### autoencoder + disc version
def setup_optimizers_ae_disc(config: OmegaConf, model: nn.Module, total_steps: int):
L.log.info("\n\n### Setting up the optimizers and schedulers. ###")
# compute the total batch size and the learning rate
total_batch_size = config.data.batch_size * config.world_size * config.data.gradient_accumulate
total_learning_rate = config.train.learning_rate * total_batch_size
multipled_learning_rate = total_learning_rate * config.train.mul_learning_rate
L.log.info(f"Total batch size: {total_batch_size} = {config.data.batch_size} * {config.world_size} * {config.data.gradient_accumulate}")
L.log.info(f"Total learning rate: {total_learning_rate} = {config.train.learning_rate} * {total_batch_size}")
L.log.info(f"Multipled learning rate: {multipled_learning_rate} = {total_learning_rate} * {config.train.mul_learning_rate}")
# setup the optimizers
param_group = []
## base learning rate
wd_params, wd_names, no_wd_params, no_wd_names = set_weight_decay([model.encoder, model.decoder, model.quant_conv, model.post_quant_conv])
param_group.append({
"params": wd_params, "lr": total_learning_rate, "eps": 1e-7,
"weight_decay": config.train.weight_decay, "beta": (0.9, 0.999),
})
param_group.append({
"params": no_wd_params, "lr": total_learning_rate, "eps": 1e-7,
"weight_decay": 0.0, "beta": (0.9, 0.999),
})
## multipled learning rate
wd_params, wd_names, no_wd_params, no_wd_names = set_weight_decay([model.quantize])
param_group.append({
"params": wd_params, "lr": multipled_learning_rate, "eps": 1e-7,
"weight_decay": config.train.weight_decay, "beta": (0.9, 0.999),
})
param_group.append({
"params": no_wd_params, "lr": multipled_learning_rate, "eps": 1e-7,
"weight_decay": 0.0, "beta": (0.9, 0.999),
})
optimizer_ae = torch.optim.AdamW(param_group)
param_group = []
wd_params, wd_names, no_wd_params, no_wd_names = set_weight_decay([model.loss.discriminator])
param_group.append({
"params": wd_params, "lr": total_learning_rate, "eps": 1e-7,
"weight_decay": config.train.weight_decay, "beta": (0.9, 0.999),
})
param_group.append({
"params": no_wd_params, "lr": total_learning_rate, "eps": 1e-7,
"weight_decay": 0.0, "beta": (0.9, 0.999),
})
optimizer_disc = torch.optim.AdamW(param_group)
optimizer_dict = {"optimizer_ae": optimizer_ae, "optimizer_disc": optimizer_disc}
# setup the schedulers
scheduler_ae = torch.optim.lr_scheduler.OneCycleLR(
optimizer=optimizer_ae, max_lr=[total_learning_rate, total_learning_rate, multipled_learning_rate, multipled_learning_rate],
total_steps=total_steps, pct_start=0.01, anneal_strategy="cos"
)
scheduler_disc = torch.optim.lr_scheduler.OneCycleLR(
optimizer=optimizer_disc, max_lr=[total_learning_rate, total_learning_rate],
total_steps=total_steps, pct_start=0.01, anneal_strategy="cos"
)
scheduler_dict = {"scheduler_ae": scheduler_ae, "scheduler_disc": scheduler_disc}
# setup the scalers
scaler_dict = {"scaler_ae": torch.GradScaler(enabled=config.use_amp),
"scaler_disc": torch.GradScaler(enabled=config.use_amp)}
L.log.info(f"Enable AMP: {config.use_amp}")
return optimizer_dict, scheduler_dict, scaler_dict
def pipeline_ae_disc(
config,
x: torch.Tensor,
model: nn.Module,
optimizers: dict,
schedulers: dict,
scalers: dict,
):
# autoencoder step
assert "optimizer_ae" in optimizers
assert "scheduler_ae" in schedulers
assert "scaler_ae" in scalers
optimizer = optimizers["optimizer_ae"]
scheduler = schedulers["scheduler_ae"]
scaler = scalers["scaler_ae"]
forward = partial(model, mode=0)
_, (loss_ae_dict, indices) = _forward_backward(config, x, forward, model, optimizer, scheduler, scaler)
log_per_step = loss_ae_dict
log_per_epoch = {"indices": indices}
# discriminator step
assert "optimizer_disc" in optimizers
assert "scheduler_disc" in schedulers
assert "scaler_disc" in scalers
optimizer = optimizers["optimizer_disc"]
scheduler = schedulers["scheduler_disc"]
scaler = scalers["scaler_disc"]
forward = partial(model, mode=1)
_, (loss_disc_dict, _) = _forward_backward(config, x, forward, model, optimizer, scheduler, scaler)
log_per_step.update(loss_disc_dict)
return log_per_step, log_per_epoch |