Spaces:
Sleeping
Sleeping
File size: 9,991 Bytes
199c8cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
# ------------------------------------------------------------------------------
# OptVQ: Preventing Local Pitfalls in Vector Quantization via Optimal Transport
# Copyright (c) 2024 Borui Zhang. All Rights Reserved.
# Licensed under the MIT License [see LICENSE for details]
# ------------------------------------------------------------------------------
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
import torch.distributed as dist
import revq.utils.logger as L
class VectorQuantizer(nn.Module):
def __init__(self, n_e: int = 1024, e_dim: int = 128,
beta: float = 1.0, use_norm: bool = False,
use_proj: bool = True, fix_codes: bool = False,
loss_q_type: str = "ce",
num_head: int = 1,
start_quantize_steps: int = None):
super(VectorQuantizer, self).__init__()
self.n_e = n_e
self.e_dim = e_dim
self.beta = beta
self.loss_q_type = loss_q_type
self.num_head = num_head
self.start_quantize_steps = start_quantize_steps
self.code_dim = self.e_dim // self.num_head
self.norm = lambda x: F.normalize(x, p=2.0, dim=-1, eps=1e-6) if use_norm else x
assert not use_norm, f"use_norm=True is no longer supported! Because the norm operation without theorectical analysis may cause unpredictable unstability."
self.use_proj = use_proj
self.embedding = nn.Embedding(num_embeddings=n_e, embedding_dim=self.code_dim)
if use_proj:
self.proj = nn.Linear(self.code_dim, self.code_dim)
torch.nn.init.normal_(self.proj.weight, std=self.code_dim ** -0.5)
if fix_codes:
self.embedding.weight.requires_grad = False
def reshape_input(self, x: Tensor):
"""
(B, C, H, W) / (B, T, C) -> (B, T, C)
"""
if x.ndim == 4:
_, C, H, W = x.size()
x = x.permute(0, 2, 3, 1).contiguous().view(-1, H * W, C)
return x, {"size": (H, W)}
elif x.ndim == 3:
return x, None
else:
raise ValueError("Invalid input shape!")
def recover_output(self, x: Tensor, info):
if info is not None:
H, W = info["size"]
if x.ndim == 3: # features (B, T, C) -> (B, C, H, W)
C = x.size(2)
return x.view(-1, H, W, C).permute(0, 3, 1, 2).contiguous()
elif x.ndim == 2: # indices (B, T) -> (B, H, W)
return x.view(-1, H, W)
else:
raise ValueError("Invalid input shape!")
else: # features (B, T, C) or indices (B, T)
return x
def get_codebook(self, return_numpy: bool = True):
embed = self.proj(self.embedding.weight) if self.use_proj else self.embedding.weight
if return_numpy:
return embed.data.cpu().numpy()
else:
return embed.data
def quantize_input(self, query, reference):
# compute the distance matrix
query2ref = torch.cdist(query, reference, p=2.0) # (B1, B2)
# find the nearest embedding
indices = torch.argmin(query2ref, dim=-1) # (B1,)
nearest_ref = reference[indices] # (B1, C)
return indices, nearest_ref, query2ref
def compute_codebook_loss(self, query, indices, nearest_ref, beta: float, query2ref):
# compute the loss
if self.loss_q_type == "l2":
loss = torch.mean((query - nearest_ref.detach()).pow(2)) + \
torch.mean((nearest_ref - query.detach()).pow(2)) * beta
elif self.loss_q_type == "l1":
loss = torch.mean((query - nearest_ref.detach()).abs()) + \
torch.mean((nearest_ref - query.detach()).abs()) * beta
elif self.loss_q_type == "ce":
loss = F.cross_entropy(- query2ref, indices)
return loss
def compute_quantized_output(self, x, x_q):
if self.start_quantize_steps is not None:
if self.training and L.log.total_steps < self.start_quantize_steps:
L.log.add_scalar("params/quantize_ratio", 0.0)
return x
else:
L.log.add_scalar("params/quantize_ratio", 1.0)
return x + (x_q - x).detach()
else:
L.log.add_scalar("params/quantize_ratio", 1.0)
return x + (x_q - x).detach()
@torch.autocast(device_type="cuda", enabled=False)
def forward(self, x: Tensor):
"""
Quantize the input tensor x with the embedding table.
Args:
x (Tensor): input tensor with shape (B, C, H, W) or (B, T, C)
Returns:
(tuple) containing: (x_q, loss, indices)
"""
x = x.float()
x, info = self.reshape_input(x)
B, T, C = x.size()
x = x.view(-1, C) # (B * T, C)
embed = self.proj(self.embedding.weight) if self.use_proj else self.embedding.weight
# split the x if multi-head is used
if self.num_head > 1:
x = x.view(-1, self.code_dim) # (B * T * nH, dC)
# compute the distance between x and each embedding
x, embed = self.norm(x), self.norm(embed)
# compute losses
indices, x_q, query2ref = self.quantize_input(x, embed)
loss = self.compute_codebook_loss(
query=x, indices=indices, nearest_ref=x_q,
beta=self.beta, query2ref=query2ref
)
# compute statistics
if self.training and L.GET_STATS:
with torch.no_grad():
num_unique = torch.unique(indices).size(0)
x_norm_mean = torch.mean(x.norm(dim=-1))
embed_norm_mean = torch.mean(embed.norm(dim=-1))
diff_norm_mean = torch.mean((x_q - x).norm(dim=-1))
x2e_mean = query2ref.mean()
L.log.add_scalar("params/num_unique", num_unique)
L.log.add_scalar("params/x_norm", x_norm_mean.item())
L.log.add_scalar("params/embed_norm", embed_norm_mean.item())
L.log.add_scalar("params/diff_norm", diff_norm_mean.item())
L.log.add_scalar("params/x2e_mean", x2e_mean.item())
# compute the final x_q
x_q = self.compute_quantized_output(x, x_q).view(B, T, C)
indices = indices.view(B, T, self.num_head)
# for output
x_q = self.recover_output(x_q, info)
indices = self.recover_output(indices, info)
return x_q, loss, indices
def sinkhorn(cost: Tensor, n_iters: int = 3, epsilon: float = 1, is_distributed: bool = False):
"""
Sinkhorn algorithm.
Args:
cost (Tensor): shape with (B, K)
"""
Q = torch.exp(- cost * epsilon).t() # (K, B)
if is_distributed:
B = Q.size(1) * dist.get_world_size()
else:
B = Q.size(1)
K = Q.size(0)
# make the matrix sums to 1
sum_Q = torch.sum(Q)
if is_distributed:
dist.all_reduce(sum_Q)
Q /= (sum_Q + 1e-8)
for _ in range(n_iters):
# normalize each row: total weight per prototype must be 1/K
sum_of_rows = torch.sum(Q, dim=1, keepdim=True)
if is_distributed:
dist.all_reduce(sum_of_rows)
Q /= (sum_of_rows + 1e-8)
Q /= K
# normalize each column: total weight per sample must be 1/B
Q /= (torch.sum(Q, dim=0, keepdim=True) + 1e-8)
Q /= B
Q *= B # the columns must sum to 1 so that Q is an assignment
return Q.t() # (B, K)
class VectorQuantizerSinkhorn(VectorQuantizer):
def __init__(self, epsilon: float = 10.0, n_iters: int = 5,
normalize_mode: str = "all", use_prob: bool = True,
*args, **kwargs):
super(VectorQuantizerSinkhorn, self).__init__(*args, **kwargs)
self.epsilon = epsilon
self.n_iters = n_iters
self.normalize_mode = normalize_mode
self.use_prob = use_prob
def normalize(self, A, dim, mode="all"):
if mode == "all":
A = (A - A.mean()) / (A.std() + 1e-6)
A = A - A.min()
elif mode == "dim":
A = A / math.sqrt(dim)
elif mode == "null":
pass
return A
def quantize_input(self, query, reference):
# compute the distance matrix
query2ref = torch.cdist(query, reference, p=2.0) # (B1, B2)
# compute the assignment matrix
with torch.no_grad():
is_distributed = dist.is_initialized() and dist.get_world_size() > 1
normalized_cost = self.normalize(query2ref, dim=reference.size(1), mode=self.normalize_mode)
Q = sinkhorn(normalized_cost, n_iters=self.n_iters, epsilon=self.epsilon, is_distributed=is_distributed)
if self.use_prob:
# avoid the zero value problem
max_q_id = torch.argmax(Q, dim=-1)
Q[torch.arange(Q.size(0)), max_q_id] += 1e-8
indices = torch.multinomial(Q, num_samples=1).squeeze()
else:
indices = torch.argmax(Q, dim=-1)
nearest_ref = reference[indices]
if self.training and L.GET_STATS:
if L.log.total_steps % 1000 == 0:
L.log.add_histogram("params/normalized_cost", normalized_cost)
return indices, nearest_ref, query2ref
class Identity(VectorQuantizer):
@torch.autocast(device_type="cuda", enabled=False)
def forward(self, x: Tensor):
x = x.float()
loss_q = torch.tensor(0.0, device=x.device, dtype=x.dtype)
# compute statistics
if self.training and L.GET_STATS:
with torch.no_grad():
x_flatten, _ = self.reshape_input(x)
x_norm_mean = torch.mean(x_flatten.norm(dim=-1))
L.log.add_scalar("params/x_norm", x_norm_mean.item())
return x, loss_q, None |