File size: 9,991 Bytes
199c8cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# ------------------------------------------------------------------------------
# OptVQ: Preventing Local Pitfalls in Vector Quantization via Optimal Transport
# Copyright (c) 2024 Borui Zhang. All Rights Reserved.
# Licensed under the MIT License [see LICENSE for details]
# ------------------------------------------------------------------------------

import math
import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor

import torch.distributed as dist

import revq.utils.logger as L

class VectorQuantizer(nn.Module):
    def __init__(self, n_e: int = 1024, e_dim: int = 128, 
                 beta: float = 1.0, use_norm: bool = False,
                 use_proj: bool = True, fix_codes: bool = False,
                 loss_q_type: str = "ce",
                 num_head: int = 1,
                 start_quantize_steps: int = None):
        super(VectorQuantizer, self).__init__()
        self.n_e = n_e
        self.e_dim = e_dim
        self.beta = beta
        self.loss_q_type = loss_q_type
        self.num_head = num_head
        self.start_quantize_steps = start_quantize_steps
        self.code_dim = self.e_dim // self.num_head

        self.norm = lambda x: F.normalize(x, p=2.0, dim=-1, eps=1e-6) if use_norm else x
        assert not use_norm, f"use_norm=True is no longer supported! Because the norm operation without theorectical analysis may cause unpredictable unstability."
        self.use_proj = use_proj

        self.embedding = nn.Embedding(num_embeddings=n_e, embedding_dim=self.code_dim)
        if use_proj:
            self.proj = nn.Linear(self.code_dim, self.code_dim)
            torch.nn.init.normal_(self.proj.weight, std=self.code_dim ** -0.5)
        if fix_codes:
            self.embedding.weight.requires_grad = False

    def reshape_input(self, x: Tensor):
        """
        (B, C, H, W) / (B, T, C) -> (B, T, C)
        """
        if x.ndim == 4:
            _, C, H, W = x.size()
            x = x.permute(0, 2, 3, 1).contiguous().view(-1, H * W, C)
            return x, {"size": (H, W)}
        elif x.ndim == 3:
            return x, None
        else:
            raise ValueError("Invalid input shape!")

    def recover_output(self, x: Tensor, info):
        if info is not None:
            H, W = info["size"]
            if x.ndim == 3: # features (B, T, C) -> (B, C, H, W)
                C = x.size(2)
                return x.view(-1, H, W, C).permute(0, 3, 1, 2).contiguous()
            elif x.ndim == 2: # indices (B, T) -> (B, H, W)
                return x.view(-1, H, W)
            else:
                raise ValueError("Invalid input shape!")
        else: # features (B, T, C) or indices (B, T)
            return x
    
    def get_codebook(self, return_numpy: bool = True):
        embed = self.proj(self.embedding.weight) if self.use_proj else self.embedding.weight
        if return_numpy:
            return embed.data.cpu().numpy()
        else:
            return embed.data

    def quantize_input(self, query, reference):
        # compute the distance matrix
        query2ref = torch.cdist(query, reference, p=2.0) # (B1, B2)

        # find the nearest embedding
        indices = torch.argmin(query2ref, dim=-1) # (B1,)
        nearest_ref = reference[indices] # (B1, C)
            
        return indices, nearest_ref, query2ref

    def compute_codebook_loss(self, query, indices, nearest_ref, beta: float, query2ref):
        # compute the loss
        if self.loss_q_type == "l2":
            loss = torch.mean((query - nearest_ref.detach()).pow(2)) + \
                   torch.mean((nearest_ref - query.detach()).pow(2)) * beta
        elif self.loss_q_type == "l1":
            loss = torch.mean((query - nearest_ref.detach()).abs()) + \
                   torch.mean((nearest_ref - query.detach()).abs()) * beta
        elif self.loss_q_type == "ce":
            loss = F.cross_entropy(- query2ref, indices)

        return loss
    
    def compute_quantized_output(self, x, x_q):
        if self.start_quantize_steps is not None:
            if self.training and L.log.total_steps < self.start_quantize_steps:
                L.log.add_scalar("params/quantize_ratio", 0.0)
                return x
            else:
                L.log.add_scalar("params/quantize_ratio", 1.0)
                return x + (x_q - x).detach()
        else:
            L.log.add_scalar("params/quantize_ratio", 1.0)
            return x + (x_q - x).detach()  

    @torch.autocast(device_type="cuda", enabled=False)
    def forward(self, x: Tensor):
        """
        Quantize the input tensor x with the embedding table.

        Args:
            x (Tensor): input tensor with shape (B, C, H, W) or (B, T, C)
        Returns:
            (tuple) containing: (x_q, loss, indices)
        """
        x = x.float()
        x, info = self.reshape_input(x)
        B, T, C = x.size()
        x = x.view(-1, C) # (B * T, C)
        embed = self.proj(self.embedding.weight) if self.use_proj else self.embedding.weight

        # split the x if multi-head is used
        if self.num_head > 1:
            x = x.view(-1, self.code_dim) # (B * T * nH, dC)

        # compute the distance between x and each embedding
        x, embed = self.norm(x), self.norm(embed)

        # compute losses
        indices, x_q, query2ref = self.quantize_input(x, embed)
        loss = self.compute_codebook_loss(
            query=x, indices=indices, nearest_ref=x_q, 
            beta=self.beta, query2ref=query2ref
        )

        # compute statistics
        if self.training and L.GET_STATS:
            with torch.no_grad():
                num_unique = torch.unique(indices).size(0)
                x_norm_mean = torch.mean(x.norm(dim=-1))
                embed_norm_mean = torch.mean(embed.norm(dim=-1))
                diff_norm_mean = torch.mean((x_q - x).norm(dim=-1))
                x2e_mean = query2ref.mean()
                L.log.add_scalar("params/num_unique", num_unique)
                L.log.add_scalar("params/x_norm", x_norm_mean.item())
                L.log.add_scalar("params/embed_norm", embed_norm_mean.item())
                L.log.add_scalar("params/diff_norm", diff_norm_mean.item())
                L.log.add_scalar("params/x2e_mean", x2e_mean.item())
    
        # compute the final x_q
        x_q = self.compute_quantized_output(x, x_q).view(B, T, C)
        indices = indices.view(B, T, self.num_head)

        # for output
        x_q = self.recover_output(x_q, info)
        indices = self.recover_output(indices, info)
        
        return x_q, loss, indices

def sinkhorn(cost: Tensor, n_iters: int = 3, epsilon: float = 1, is_distributed: bool = False):
    """
    Sinkhorn algorithm.
    Args:
        cost (Tensor): shape with (B, K)
    """
    Q = torch.exp(- cost * epsilon).t() # (K, B)
    if is_distributed:
        B = Q.size(1) * dist.get_world_size()
    else:
        B = Q.size(1)
    K = Q.size(0)

    # make the matrix sums to 1
    sum_Q = torch.sum(Q)
    if is_distributed:
        dist.all_reduce(sum_Q)
    Q /= (sum_Q + 1e-8)

    for _ in range(n_iters):
        # normalize each row: total weight per prototype must be 1/K
        sum_of_rows = torch.sum(Q, dim=1, keepdim=True)
        if is_distributed:
            dist.all_reduce(sum_of_rows)
        Q /= (sum_of_rows + 1e-8)
        Q /= K

        # normalize each column: total weight per sample must be 1/B
        Q /= (torch.sum(Q, dim=0, keepdim=True) + 1e-8)
        Q /= B
    
    Q *= B # the columns must sum to 1 so that Q is an assignment
    return Q.t() # (B, K)

class VectorQuantizerSinkhorn(VectorQuantizer):
    def __init__(self, epsilon: float = 10.0, n_iters: int = 5, 
                 normalize_mode: str = "all", use_prob: bool = True,
                 *args, **kwargs):
        super(VectorQuantizerSinkhorn, self).__init__(*args, **kwargs)
        self.epsilon = epsilon
        self.n_iters = n_iters
        self.normalize_mode = normalize_mode
        self.use_prob = use_prob

    def normalize(self, A, dim, mode="all"):
        if mode == "all":
            A = (A - A.mean()) / (A.std() + 1e-6)
            A = A - A.min()
        elif mode == "dim":
            A = A / math.sqrt(dim)
        elif mode == "null":
            pass
        return A

    def quantize_input(self, query, reference):
        # compute the distance matrix
        query2ref = torch.cdist(query, reference, p=2.0) # (B1, B2)
        
        # compute the assignment matrix
        with torch.no_grad():
            is_distributed = dist.is_initialized() and dist.get_world_size() > 1
            normalized_cost = self.normalize(query2ref, dim=reference.size(1), mode=self.normalize_mode)
            Q = sinkhorn(normalized_cost, n_iters=self.n_iters, epsilon=self.epsilon, is_distributed=is_distributed)
                
        if self.use_prob:
            # avoid the zero value problem
            max_q_id = torch.argmax(Q, dim=-1)
            Q[torch.arange(Q.size(0)), max_q_id] += 1e-8
            indices = torch.multinomial(Q, num_samples=1).squeeze()
        else:
            indices = torch.argmax(Q, dim=-1)
        nearest_ref = reference[indices]

        if self.training and L.GET_STATS:
            if L.log.total_steps % 1000 == 0:
                L.log.add_histogram("params/normalized_cost", normalized_cost)
        
        return indices, nearest_ref, query2ref

class Identity(VectorQuantizer):
    @torch.autocast(device_type="cuda", enabled=False)
    def forward(self, x: Tensor):
        x = x.float()
        loss_q = torch.tensor(0.0, device=x.device, dtype=x.dtype)

        # compute statistics
        if self.training and L.GET_STATS:
            with torch.no_grad():
                x_flatten, _ = self.reshape_input(x)
                x_norm_mean = torch.mean(x_flatten.norm(dim=-1))
                L.log.add_scalar("params/x_norm", x_norm_mean.item())
        
        return x, loss_q, None